Univalence axiom

From formulasearchengine
Jump to navigation Jump to search

In mathematics, a Descartes number is a number which is close to being a perfect number. They are named for René Descartes who observed that the number D = 32⋅72⋅112⋅132⋅22021 = 198585576189 would be an odd perfect number if only 22021 were a prime number, since the sum-of-divisors function for D satisfies

σ(D)=(32+3+1)(72+7+1)(112+11+1)(133+13+1)(22021+1).

A Descartes number is defined as an odd number n = mp where m and p are coprime and 2n = σ(m)⋅(p+1). The example given is the only one currently known.

If m is an odd almost perfect number, that is, σ(m) = 2m−1, then m(2m−1) is a Descartes number.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

Template:Classes of natural numbers Template:Numtheory-stub