Nice name

From formulasearchengine
Jump to navigation Jump to search

In mathematics, a Lipschitz domain (or domain with Lipschitz boundary) is a domain in Euclidean space whose boundary is "sufficiently regular" in the sense that it can be thought of as locally being the graph of a Lipschitz continuous function. The term is named after the German mathematician Rudolf Lipschitz.

Definition

Let n ∈ N, and let Ω be an open and bounded subset of Rn. Let ∂Ω denote the boundary of Ω. Then Ω is said to have Lipschitz boundary, and is called a Lipschitz domain, if, for every point p ∈ ∂Ω, there exists a radius r > 0 and a map hp : Br(p) → Q such that

  • hp is a bijection;
  • hp and hp−1 are both Lipschitz continuous functions;
  • hp(∂Ω ∩ Br(p)) = Q0;
  • hp(Ω ∩ Br(p)) = Q+;

where

Br(p):={xn|xp<r}

denotes the n-dimensional open ball of radius r about p, Q denotes the unit ball B1(0), and

Q0:={(x1,,xn)Q|xn=0};
Q+:={(x1,,xn)Q|xn>0}.

Applications of Lipschitz domains

Many of the Sobolev embedding theorems require that the domain of study be a Lipschitz domain. Consequently, many partial differential equations and variational problems are defined on Lipschitz domains.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534