Group testing

From formulasearchengine
Jump to navigation Jump to search

Template:Cleanup Template:Probability distribution

In probability theory and statistics, the negative multinomial distribution is a generalization of the negative binomial distribution (NB(r, p)) to more than two outcomes.[1]

Suppose we have an experiment that generates m+1≥2 possible outcomes, {X0,…,Xm}, each occurring with non-negative probabilities {p0,…,pm} respectively. If sampling proceeded until n observations were made, then {X0,…,Xm} would have been multinomially distributed. However, if the experiment is stopped once X0 reaches the predetermined value k0, then the distribution of the m-tuple {X1,…,Xm} is negative multinomial.

Negative multinomial distribution example

The table below shows the an example of 400 Melanoma (skin cancer) Patients where the Type and Site of the cancer are recorded for each subject.

Type Site Totals
Head and Neck Trunk Extremities
Hutchinson's melanomic freckle 22 2 10 34
Superficial 16 54 115 185
Nodular 19 33 73 125
Indeterminant 11 17 28 56
Column Totals 68 106 226 400

The sites (locations) of the cancer may be independent, but there may be positive dependencies of the type of cancer for a given location (site). For example, localized exposure to radiation implies that elevated level of one type of cancer (at a given location) may indicate higher level of another cancer type at the same location. The Negative Multinomial distribution may be used to model the sites cancer rates and help measure some of the cancer type dependencies within each location.

If xi,j denote the cancer rates for each site (0i2) and each type of cancer (0j3), for a fixed site (i0) the cancer rates are independent Negative Multinomial distributed random variables. That is, for each column index (site) the column-vector X has the following distribution:

X={X1,X2,X3}NM(k0,{p1,p2,p3}).

Different columns in the table (sites) are considered to be different instances of the random multinomially distributed vector, X. Then we have the following estimates of expected counts (frequencies of cancer):

μ^i,j=xi,.×x.,jx.,.
xi,.=j=03xi,j
x.,j=i=02xi,j
x.,.=i=02j=03xi,j
Example: μ^1,1=x1,.×x.,1x.,.=34×68400=5.78

For the first site (Head and Neck, j=0), suppose that X={X1=5,X2=1,X3=5} and XNM(k0=10,{p1=0.2,p2=0.1,p3=0.2}). Then:

p0=1i=13pi=0.5
NM(X|k0,{p1,p2,p3})=0.00465585119998784
cov[X1,X3]=10×0.2×0.20.52=1.6
μ2=k0p2p0=10×0.10.5=2.0
μ3=k0p3p0=10×0.20.5=4.0
corr[X2,X3]=(μ2×μ3(k0+μ2)(k0+μ3))12 and therefore, corr[X2,X3]=(2×4(10+2)(10+4))12=0.21821789023599242.

Notice that the pair-wise NM correlations are always positive, whereas the correlations between multinomial counts are always negative. As the parameter k0 increases, the paired correlations tend to zero! Thus, for large k0, the Negative Multinomial counts Xi behave as independent Poisson random variables with respect to their means (μi=k0pip0).

The marginal distribution of each of the Xi variables is negative binomial, as the Xi count (considered as success) is measured against all the other outcomes (failure). But jointly, the distribution of X={X1,,Xm} is negative multinomial, i.e., XNM(k0,{p1,,pm}) .

Parameter estimation

  • Estimation of the mean (expected) frequency counts (μj) of each outcome (Xj) using maximum likelihood is possible. If we have a single observation vector {x1,,xm}, then μ^i=xi. If we have several observation vectors, like in this case we have the cancer type frequencies for 3 different sites, then the MLE estimates of the mean counts are μ^j=xj,.I, where 0jJ is the cancer-type index and the summation is over the number of observed (sampled) vectors (I). For the cancer data above, we have the following MLE estimates for the expectations for the frequency counts:
Hutchinson's melanomic freckle type of cancer (X0) is μ^0=34/3=11.33.
Superficial type of cancer (X1) is μ^1=185/3=61.67.
Nodular type of cancer (X2) is μ^2=125/3=41.67.
Indeterminant type of cancer (X3) is μ^3=56/3=18.67.
X2=i(xiμi)2μi, we can replace the expected-means (μi) by their estimates, μi^, and replace denominators by the corresponding negative multinomial variances. Then we get the following test statistic for negative multinomial distributed data:
X2(k0)=i(xiμi^)2μi^(1+μi^k0).
Next, we can estimate the k0 parameter by varying the values of k0 in the expression X2(k0) and matching the values of this statistic with the corresponding asymptotic chi-squared distribution. The following protocol summarizes these steps using the cancer data above.
DF: The degree of freedom for the Chi-squared distribution in this case is:
df = (# rows – 1)(# columns – 1) = (3-1)*(4-1) = 6
Median: The median of a chi-squared random variable with 6 df is 5.261948.
Mean Counts Estimates: The mean counts estimates (μj) for the 4 different cancer types are:
μ^1=185/3=61.67; μ^2=125/3=41.67; and μ^3=56/3=18.67.
Thus, we can solve the equation above X2(k0)=5.261948 for the single variable of interest -- the unknown parameter k0. In the cancer example, suppose x={x1=5,x2=1,x3=5}. Then, the solution is an asymptotic chi-squared distribution driven estimate of the parameter k0.
X2(k0)=i=13(xiμi^)2μi^(1+μi^k0).
X2(k0)=(561.67)261.67(1+61.67/k0)+(141.67)241.67(1+41.67/k0)+(518.67)218.67(1+18.67/k0)=5.261948. Solving this equation for k0 provides the desired estimate for the last parameter.
Mathematica provides 3 distinct (k0) solutions to this equation: {50.5466, -21.5204, 2.40461}. Since k0>0 there are 2 candidate solutions.
61.67k0p0=31p0=p1
20p0=p2
9p0=p3
Hence, 1p0=p1+p2+p3=60p0, and p0=161, p1=3161, p2=2061 and p3=961.
Therefore, the best model distribution for the observed sample x={x1=5,x2=1,x3=5} is XNM(2,{3161,2061,961}).

Related distributions

References

  1. 1.0 1.1 Le Gall, F. The modes of a negative multinomial distribution, Statistics & Probability Letters, Volume 76, Issue 6, 15 March 2006, Pages 619-624, ISSN 0167-7152, 10.1016/j.spl.2005.09.009.
  2. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

Further reading

20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

55 yrs old Metal Polisher Records from Gypsumville, has interests which include owning an antique car, summoners war hack and spelunkering. Gets immense motivation from life by going to places such as Villa Adriana (Tivoli).

my web site - summoners war hack no survey ios 30 year-old Entertainer or Range Artist Wesley from Drumheller, really loves vehicle, property developers properties for sale in singapore singapore and horse racing. Finds inspiration by traveling to Works of Antoni Gaudí.