Prediction interval

From formulasearchengine
Revision as of 06:08, 18 December 2013 by en>Jason Quinn (minor cleanup)
Jump to navigation Jump to search

Template:Italic title

Modus ponendo tollens (Latin: "mode that by affirming, denies")[1] is a valid rule of inference for propositional logic, sometimes abbreviated MPT.[2] It is closely related to modus ponens and modus tollens. It is usually described as having the form:

  1. Not both A and B
  2. A
  3. Therefore, not B

For example:

  1. Ann and Bill cannot both win the race.
  2. Ann won the race.
  3. Therefore, Bill cannot have won the race.

As E.J. Lemmon describes it:"Modus ponendo tollens is the principle that, if the negation of a conjunction holds and also one of its conjuncts, then the negation of its other conjunct holds."[3]

In logic notation this can be represented as:

  1. ¬(AB)
  2. A
  3. ¬B

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

nl:Modus tollens#Modus ponendo tollens

  1. Stone, Jon R. 1996. Latin for the Illiterati: Exorcizing the Ghosts of a Dead Language. London, UK: Routledge:60.
  2. Politzer, Guy & Carles, Laure. 2001. 'Belief Revision and Uncertain Reasoning'. Thinking and Reasoning. 7:217-234.
  3. Lemmon, Edward John. 2001. Beginning Logic. Taylor and Francis/CRC Press: 61.