Huge cardinal

From formulasearchengine
Revision as of 15:03, 4 June 2012 by en>Jarble
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, more specifically topology, a local homeomorphism is intuitively a function, f, between topological spaces that preserves local structure.

Formal definition

Let X and Y be topological spaces. A function f:XY is a local homeomorphism[1] if for every point x in X there exists an open set U containing x, such that the image f(U) is open in Y and the restriction f|U:Uf(U) is a homeomorphism.

Examples

By definition, every homeomorphism is also a local homeomorphism.

If U is an open subset of Y equipped with the subspace topology, then the inclusion map i : UY is a local homeomorphism. Openness is essential here: the inclusion map of a non-open subset of Y never yields a local homeomorphism.

Every covering map is a local homeomorphism; in particular, the universal cover p : CY of a space Y is a local homeomorphism. In certain situations, the converse is true: if X and Y are locally compact spaces and p : XY is a proper local homeomorphism, then p is a covering map.

Let f : S1S1 be the map that wraps the circle around itself n times (i.e. has winding number n). This is a local homeomorphism for all non-zero n, but a homeomorphism only in the cases where it is bijective, i.e. n = 1 or -1.

It is shown in complex analysis that a complex analytic function f gives a local homeomorphism precisely when the derivative f ′(z) is non-zero for all z in the domain of f. The function f(z) = zn on an open disk around 0 is not a local homeomorphism at 0 when n is at least 2. In that case 0 is a point of "ramification" (intuitively, n sheets come together there).

Properties

Every local homeomorphism is a continuous and open map. A bijective local homeomorphism is therefore a homeomorphism.

A local homeomorphism f : XY preserves "local" topological properties:

If f : XY is a local homeomorphism and U is an open subset of X, then the restriction f|U is also a local homeomorphism.

If f : XY and g : YZ are local homeomorphisms, then the composition gf : XZ is also a local homeomorphism.

The local homeomorphisms with codomain Y stand in a natural 1-1 correspondence with the sheaves of sets on Y. Furthermore, every continuous map with codomain Y gives rise to a uniquely defined local homeomorphism with codomain Y in a natural way. All of this is explained in detail in the article on sheaves.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534