Maxwell–Boltzmann statistics

From formulasearchengine
Revision as of 22:50, 21 January 2014 by en>Nanite (merge off)
Jump to navigation Jump to search

Template:Distinguish2 Name: Jodi Junker
My age: 32
Country: Netherlands
Home town: Oudkarspel
Post code: 1724 Xg
Street: Waterlelie 22

my page - www.hostgator1centcoupon.info Template:Regression bar

In statistics, the Gauss–Markov theorem, named after Carl Friedrich Gauss and Andrey Markov, states that in a linear regression model in which the errors have expectation zero and are uncorrelated and have equal variances, the best linear unbiased estimator (BLUE) of the coefficients is given by the ordinary least squares (OLS) estimator. Here "best" means giving the lowest variance of the estimate, as compared to other unbiased, linear estimates. The errors don't need to be normal, nor do they need to be independent and identically distributed (only uncorrelated and homoscedastic). The hypothesis that the estimator be unbiased cannot be dropped, since otherwise estimators better than OLS exist. See for examples the James–Stein estimator (which also drops linearity) or ridge regression.

Statement

Suppose we have in matrix notation,

y_=Xβ_+ε_,(y_,ε_n,βK and Xn×K)

expanding to,

yi=j=1KβjXij+εii=1,2,,n

where βj are non-random but unobservable parameters, Xij are non-random and observable (called the "explanatory variables"), εi are random, and so yi are random. The random variables εi are called the "residuals" or "noise" (will be contrasted with "errors" later in the article; see errors and residuals in statistics). Note that to include a constant in the model above, one can choose to introduce the constant as a variable βK+1 with a newly introduced last column of X being unity i.e., Xi(K+1)=1 for all i.

The Gauss–Markov assumptions are

(i.e., all residuals have the same variance; that is "homoscedasticity"), and

for ij that is, any the noise terms are drawn from an "uncorrelated" distribution. A linear estimator of βj is a linear combination

β^j=c1jy1++cnjyn

in which the coefficients cij are not allowed to depend on the underlying coefficients βj, since those are not observable, but are allowed to depend on the values Xij, since these data are observable. (The dependence of the coefficients on each Xij is typically nonlinear; the estimator is linear in each yi and hence in each random ε, which is why this is "linear" regression.) The estimator is said to be unbiased if and only if

E(β^j)=βj

regardless of the values of Xij. Now, let j=1Kλjβj be some linear combination of the coefficients. Then the mean squared error of the corresponding estimation is

E((j=1Kλj(β^jβj))2);

i.e., it is the expectation of the square of the weighted sum (across parameters) of the differences between the estimators and the corresponding parameters to be estimated. (Since we are considering the case in which all the parameter estimates are unbiased, this mean squared error is the same as the variance of the linear combination.) The best linear unbiased estimator (BLUE) of the vector β of parameters βj is one with the smallest mean squared error for every vector λ of linear combination parameters. This is equivalent to the condition that

V(β~)V(β^)

is a positive semi-definite matrix for every other linear unbiased estimator β~.

The ordinary least squares estimator (OLS) is the function

β^=(XX)1Xy

of y and X (where X denotes the transpose of X) that minimizes the sum of squares of residuals (misprediction amounts):

i=1n(yiy^i)2=i=1n(yij=1Kβ^jXij)2.

The theorem now states that the OLS estimator is a BLUE. The main idea of the proof is that the least-squares estimator is uncorrelated with every linear unbiased estimator of zero, i.e., with every linear combination a1y1++anyn whose coefficients do not depend upon the unobservable β but whose expected value is always zero.

Proof

Let β~=Cy be another linear estimator of β and let C be given by (XX)1X+D, where D is a k×n nonzero matrix. As we're restricting to unbiased estimators, minimum mean squared error implies minimum variance. The goal is therefore to show that such an estimator has a variance no smaller than that of β^, the OLS estimator.

The expectation of β~ is:

E(Cy)=E(((XX)1X+D)(Xβ+ε))=((XX)1X+D)Xβ+((XX)1X+D)E(ε)0=(XX)1XXβ+DXβ=(Ik+DX)β.

Therefore, β~ is unbiased if and only if DX=0.

The variance of β~ is

V(β~)=V(Cy)=CV(y)C=σ2CC=σ2((XX)1X+D)(X(XX)1+D)=σ2((XX)1XX(XX)1+(XX)1XD+DX(XX)1+DD)=σ2(XX)1+σ2(XX)1(DX0)+σ2DX0(XX)1+σ2DD=σ2(XX)1V(β^)+σ2DD.

Since DD' is a positive semidefinite matrix, V(β~) exceeds V(β^) by a positive semidefinite matrix.

Generalized least squares estimator

The generalized least squares (GLS) or Aitken estimator extends the Gauss–Markov theorem to the case where the error vector has a non-scalar covariance matrixTemplate:Spaced ndashthe Aitken estimator is also a BLUE.[1]

See also

Other unbiased statistics

Notes

  1. A. C. Aitken, "On Least Squares and Linear Combinations of Observations", Proceedings of the Royal Society of Edinburgh, 1935, vol. 55, pp. 42–48.

References

Template:Refbegin

  • One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting

    In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang

    Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules

    Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.

    A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running

    The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more

    There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang

Template:Refend

External links

Template:Least squares and regression analysis