Unimolecular ion decomposition

From formulasearchengine
Revision as of 01:00, 23 October 2013 by en>ClueBot NG (Reverting possible vandalism by 74.215.131.53 to version by Kkmurray. False positive? Report it. Thanks, ClueBot NG. (0) (Bot))
Jump to navigation Jump to search

Template:BLP sources Template:Inline citations Template:Eastern name order László Pyber (born 8 May 1960 in Budapest) is a Hungarian mathematician. He works in combinatorics and group theory. He is a researcher at the Alfréd Rényi Institute of Mathematics, Budapest.He received the title the Doctor of Science from the Hungarian Academy of Sciences (1998). He won the Academics Prize (2007).

Main results

  • He proved the conjecture of Paul Erdős and Tibor Gallai, that the edges of any simple graph with n vertices can be covered with at most n-1 circuits and edges.
  • He proved the following conjecture Paul Erdős. Any graph with n vertices and its complement can be covered with n2/4+2 cliques.
  • He proved a clog2n bound to the size of a minimal base of a primitive permutation group of degree n not containing An.
  • He gave the following estimate of the number of groups of order n. If the prime power decomposition of n is n=p1g1pkgk and μ=max(g1,...,gk), then the number of nonisomporphic n-element groups is at most
n(227+o(1))μ2.
  • Łuczak and Pyber proved the following conjecture of McKay. For every, ε>0 there is a number c such that for all sufficiently large n, c randomly chosen elements generate the symmetric group Sn with probability greater than 1-ε.
  • A result also proved by Łuczak and Pyber states that almost every element of Sn does not belong to a transitive subgroup different from Sn and An (conjectured by Cameron).
  • Solving a problem of subgroup growth he proved that for every nondecreasing function g(n)≤log(n) there is a residually finite group generated by 4 element, whose growth type is ng(n).

Selected papers

External links

Template:Persondata