List of Indiana Pacers seasons

From formulasearchengine
Revision as of 12:18, 26 December 2013 by en>BattyBot (fixed CS1 errors: dates & General fixes using AWB (9816))
Jump to navigation Jump to search

In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gâteaux derivative, though weaker than the Fréchet derivative.

Let f : AF be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0A is a linear transformation u : EF with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists,

limt0+f(g(t))f(x0)t=u(g(0)).

If such a linear map u exists, then f is said to be quasi-differentiable at x0.

Continuity of u need not be assumed, but it follows instead from the definition of the quasi-derivative. If f is Fréchet differentiable at x0, then by the chain rule, f is also quasi-differentiable and its quasi-derivative is equal to its Fréchet derivative at x0. The converse is true provided E is finite dimensional. Finally, if f is quasi-differentiable, then it is Gâteaux differentiable and its Gâteaux derivative is equal to its quasi-derivative.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534


Template:Mathanalysis-stub