Line integral convolution

From formulasearchengine
Revision as of 07:44, 22 March 2013 by en>Addbot (Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q1826358)
Jump to navigation Jump to search

Template:Underlinked

In physics, the Euler–Heisenberg Lagrangian describes the non-linear dynamics of electromagnetic fields in vacuum. It takes into account vacuum polarization to one loop, and it is valid for electromagnetic fields that change slowly compared to the inverse electron mass. It was first obtained by Werner Heisenberg and Hans Heinrich Euler,[1] and can be expressed as:

=18π20dss3exp(m2s)[(es)2cosh(es2(+i𝒢))cosh(es2(+i𝒢))𝒢23(es)21]

Here m is the electron mass, e the electron charge,

=12(B2E2),

and

𝒢=EB

In the weak field limit, this becomes:

=12(E2B2)+2α245m4[(E2B2)2+7(EB)2]

References

  1. W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons Z. Phys. 98, 714 (1936).


Template:Electromagnetism-stub Template:Quantum-stub