Statisticians' and engineers' cross-reference of statistical terms

From formulasearchengine
Revision as of 05:57, 10 May 2012 by en>Helpful Pixie Bot (ISBNs (Build KE))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Hankinson's equation (also called Hankinson's formula or Hankinson's criterion)[1] is a mathematical relationship for predicting the off-axis uniaxial compressive strength of wood. The formula can also be used to compute the fiber stress or the stress wave velocity at the elastic limit as a function of grain angle in wood. For a wood that has uniaxial compressive strengths of σ0 parallel to the grain and σ90 perpendicular to the grain, Hankinson's equation predicts that the uniaxial compressive strength of the wood in a direction at an angle α to the grain is given by

σα=σ0σ90σ0sin2α+σ90cos2α

Even though the original relation was based on studies of spruce, Hankinson's equation has been found to be remarkably accurate for many other types of wood. A generalized form of the Hankinson formula has also been used for predicting the uniaxial tensile strength of wood at an angle to the grain. This formula has the form[2]

σα=σ0σ90σ0sinnα+σ90cosnα

where the exponent n can take values between 1.5 and 2.

The stress wave velocity at angle angle α to the grain at the elastic limit can similarly be obtained from the Hankinson formula

V(α)=V0V90V0sin2α+V90cos2α

where V0 is the velocity parallel to the grain, V90 is the velocity perpendicular to the grain and α is the grain angle.

See also

Template:Continuum mechanics

References

  1. Hankinson, R. L., 1921, Investigation of crushing strength of spruce at varying angles of grain, Air Force Information Circular No. 259, U. S. Air Service.
  2. Clouston, P., 1995, The Tsai-Wu strength theory for Douglas fir laminated veneer, M. S. Thesis, The University of British Columbia.

External links