Dominance (economics)

From formulasearchengine
Revision as of 17:27, 28 September 2013 by 83.104.51.74 (talk) (Examples)
Jump to navigation Jump to search

In mathematics, and in particular number theory, Grimm's conjecture (named after C. A. Grimm) states that to each element of a set of consecutive composite numbers one can assign a distinct prime that divides it. It was first published in American Mathematical Monthly, 76(1969) 1126-1128.

Formal statement

Suppose n + 1, n + 2, …, n + k are all composite numbers, then there are k distinct primes pi such that pi divides n + i for 1 ≤ i ≤ k.

Weaker version

A weaker, though still unproven, version of this conjecture goes: If there is no prime in the interval [n+1,n+k], then xk(n+x) has at least k distinct prime divisors.

See also

References

  • 22 year-old Systems Analyst Rave from Merrickville-Wolford, has lots of hobbies and interests including quick cars, property developers in singapore and baking. Always loves visiting spots like Historic Monuments Zone of Querétaro.

    Here is my web site - cottagehillchurch.com
  • Guy, R. K. "Grimm's Conjecture." §B32 in Unsolved Problems in Number Theory, 3rd ed., Springer Science+Business Media, pp. 133-134, 2004. ISBN 0-387-20860-7