Pauling's rules
In mathematics, a function is symmetrically continuous at a point x
The usual definition of continuity implies symmetric continuity, but the converse is not true. For example, the function is symmetrically continuous at , but not continuous.
Also, symmetric differentiability implies symmetric continuity, but the converse is not true just like usual continuity does not imply differentiability.
References
- 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534