Hyperfunction

From formulasearchengine
Jump to navigation Jump to search

Name: Jodi Junker
My age: 32
Country: Netherlands
Home town: Oudkarspel
Post code: 1724 Xg
Street: Waterlelie 22

my page - www.hostgator1centcoupon.info

In mathematics, particularly in set theory and model theory, there are at least three notions of stationary set:

Classical notion

If κ is a cardinal of uncountable cofinality, Sκ, and S intersects every club set in κ, then S is called a stationary set. If a set is not stationary, then it is called a thin set. This notion should not be confused with the notion of a thin set in number theory.

If S is a stationary set and C is a club set, then their intersection SC is also stationary. Because if D is any club set, then CD is a club set because the intersection of two club sets is club. Thus (SC)D=S(CD) is non empty. Therefore (SC) must be stationary.

See also: Fodor's lemma

The restriction to uncountable cofinality is in order to avoid trivialities: Suppose κ has countable cofinality. Then Sκ is stationary in κ if and only if κS is bounded in κ. In particular, if the cofinality of κ is ω=0, then any two stationary subsets of κ have stationary intersection.

This is no longer the case if the cofinality of κ is uncountable. In fact, suppose κ is regular and Sκ is stationary. Then S can be partitioned into κ many disjoint stationary sets. This result is due to Solovay. If κ is a successor cardinal, this result is due to Ulam and is easily shown by means of what is called an Ulam matrix.

Jech's notion

There is also a notion of stationary subset of [X]λ, for λ a cardinal and X a set such that |X|λ, where [X]λ is the set of subsets of X of cardinality λ: [X]λ={YX:|Y|=λ}. This notion is due to Thomas Jech. As before, S[X]λ is stationary if and only if it meets every club, where a club subset of [X]λ is a set unbounded under and closed under union of chains of length at most λ. These notions are in general different, although for X=ω1 and λ=0 they coincide in the sense that S[ω1]ω is stationary if and only if Sω1 is stationary in ω1.

The appropriate version of Fodor's lemma also holds for this notion.

Generalized notion

There is yet a third notion, model theoretic in nature and sometimes referred to as generalized stationarity. This notion is probably due to Magidor, Foreman and Shelah and has also been used prominently by Woodin.

Now let X be a nonempty set. A set C𝒫(X) is club (closed and unbounded) if and only if there is a function F:[X]<ωX such that C={z:F[[z]<ω]z}. Here, [y]<ω is the collection of finite subsets of y.

S𝒫(X) is stationary in 𝒫(X) if and only if it meets every club subset of 𝒫(X).

To see the connection with model theory, notice that if M is a structure with universe X in a countable language and F is a Skolem function for M, then a stationary S must contain an elementary substructure of M. In fact, S𝒫(X) is stationary if and only if for any such structure M there is an elementary substructure of M that belongs to S.

References

Matthew Foreman, Stationary sets, Chang's Conjecture and partition theory, in Set Theory (The Hajnal Conference) DIMACS Ser. Discrete Math. Theoret. Comp. Sci., 58, Amer. Math. Soc., Providence, RI. 2002 pp. 73–94 File at [1]

External links