Perturbation (astronomy)
A random permutation is a random ordering of a set of objects, that is, a permutation-valued random variable. The use of random permutations is often fundamental to fields that use randomized algorithms such as coding theory, cryptography, and simulation. A good example of a random permutation is the shuffling of a deck of cards: this is ideally a random permutation of the 52 cards.
Generating random permutations
Entry-by-entry brute force method
One method of generating a random permutation of a set of length n uniformly at random (i.e., each of the n! permutations is equally likely to appear) is to generate a sequence by taking a random number between 1 and n sequentially, ensuring that there is no repetition, and interpreting this sequence (x1, ..., xn) as the permutation
shown here in two-line notation.
This brute-force method will require occasional retries whenever the random number picked is a repeat of a number already selected. This can be avoided if, on the ith step (when x1, ..., xi − 1 have already been chosen), one chooses a number j at random between 1 and n − i + 1 and sets xi equal to the jth largest of the unchosen numbers.
Knuth shuffles
A simple algorithm to generate a permutation of n items uniformly at random without retries, known as the Knuth shuffle, is to start with any permutation (for example, the identity permutation), and then go through the positions 1 through n − 1, and for each position i swap the element currently there with a randomly chosen element from positions i through n, inclusive. It's easy to verify that any permutation of n elements will be produced by this algorithm with probability exactly 1/n!, thus yielding a uniform distribution over all such permutations.
The initializaton to the identity permutation and the shuffling may be combined, as in the following example. It requires a function uniform(m)
which returns a random integer between 0 and m inclusive.
unsigned uniform(unsigned m); /* Returns a random integer 0 <= uniform(m) <= m */
unsigned permute(unsigned permutation[], unsigned n)
{
unsigned i;
for (i = 0; i < n; i++) {
unsigned j = uniform(i);
permutation[i] = permutation[j];
permutation[j] = i;
}
}
Note that the first assignment to permutation[i]
might be copying an uninitialized value, if j
happens to be equal to i
. However, in this case, it is immediately overwritten with a defined value on the next line.
It is also important to note that the uniform()
function can not be implemented simply as random() % (m+1)
unless a bias in the results is acceptable.
Statistics on random permutations
Fixed points
Mining Engineer (Excluding Oil ) Truman from Alma, loves to spend time knotting, largest property developers in singapore developers in singapore and stamp collecting. Recently had a family visit to Urnes Stave Church. The probability distribution of the number of fixed points of a uniformly distributed random permutation approaches a Poisson distribution with expected value 1 as n grows. In particular, it is an elegant application of the inclusion-exclusion principle to show that the probability that there are no fixed points approaches 1/e. The first n moments of this distribution are exactly those of the Poisson distribution.
Randomness testing
As with all random processes, the quality of the resulting distribution of an implementation of a randomized algorithm such as the Knuth shuffle (i.e., how close it is to the desired uniform distribution) depends on the quality of the underlying source of randomness, such as a pseudorandom number generator. There are many possible randomness tests for random permutations, such as some of the Diehard tests. A typical example of such a test is to take some permutation statistic for which the distribution is known and test whether the distribution of this statistic on a set of randomly generated permutations closely approximates the true distribution.
See also
- Ewens's sampling formula — a connection with population genetics
- Golomb–Dickman constant
- Perfect shuffle
- Random permutation statistics
- Shuffling algorithms — random sort method, iterative exchange method
External links
- Random permutation at MathWorld
- Random permutation generation -- detailed and practical explanation of Knuth shuffle algorithm and its variants for generating k-permutations (permutations of k elements chosen from a list) and k-subsets (generating a subset of the elements in the list without replacement) with pseudocode