Algebraic vector bundle

From formulasearchengine
Revision as of 01:29, 9 January 2013 by en>Addbot (Bot: Removing Orphan Tag (Nolonger an Orphan) (Report Errors))
Jump to navigation Jump to search

Much insight in quantum mechanics can be gained from understanding the solutions to the time-dependent non-relativistic Schrödinger equation in an appropriate configuration space. In vector Cartesian coordinates r, the equation takes the form

Hψ(r,t)=(T+V)ψ(r,t)=[22m2+V(r)]ψ(r,t)=iψ(r,t)t

in which ψ is the wavefunction of the system, H is the Hamiltonian operator, and T and V are the operators for the kinetic energy and potential energy, respectively. (Common forms of these operators appear in the square brackets.) The quantity t is the time. Stationary states of this equation are found by solving the eigenvalue-eigenfunction (time-independent) form of the Schrödinger equation,

[22m2+V(r)]ψ(r)=Eψ(r)

or any equivalent formulation of this equation in a different coordinate system other than Cartesian coordinates. For example, systems with spherical symmetry are simplified when expressed with spherical coordinates. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. Fortunately, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies can be found. These quantum-mechanical systems with analytical solutions are listed below, and are quite useful for teaching and gaining intuition about quantum mechanics.

Solvable systems

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

See also

Reading materials

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534