Coble creep

From formulasearchengine
Revision as of 12:27, 16 March 2013 by en>Addbot (Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q2388902)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.

In the following L is an operator

L:𝒢

which takes a function y to another function L[y]𝒢. Here, and 𝒢 are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.

Expression Curve
definition
Variables Description
Linear transformations
L[y]=y(n) Derivative of nth order
L[y]=atydt Cartesian y=y(x)
x=t
Integral, area
L[y]=yf Composition operator
L[y]=yt+yt2 Even component
L[y]=ytyt2 Odd component
L[y]=y(t+1)yt=Δy Difference operator
L[y]=y(t)y(t1)=y Backward difference (Nabla operator)
L[y]=y=Δ1y Indefinite sum operator (inverse operator of difference)
L[y]=(py)+qy Sturm–Liouville operator
Non-linear transformations
F[y]=y[1] Inverse function
F[y]=ty'[1]yy'[1] Legendre transformation
F[y]=fy Left composition
F[y]=y Indefinite product
F[y]=yy Logarithmic derivative
F[y]=tyy Elasticity
F[y]=yy32(yy)2 Schwarzian derivative
F[y]=at|y|dt Total variation
F[y]=1taatydt Arithmetic mean
F[y]=exp(1taatlnydt) Geometric mean
F[y]=yy Cartesian y=y(x)
x=t
Subtangent
F[x,y]=yxy Parametric
Cartesian
x=x(t)
y=y(t)
F[r]=r2r Polar r=r(ϕ)
ϕ=t
F[r]=12atr2dt Polar r=r(ϕ)
ϕ=t
Sector area
F[y]=at1+y'2dt Cartesian y=y(x)
x=t
Arc length
F[x,y]=atx'2+y'2dt Parametric
Cartesian
x=x(t)
y=y(t)
F[r]=atr2+r'2dt Polar r=r(ϕ)
ϕ=t
F[x,y]=aty3dt Cartesian y=y(x)
x=t
Affine arc length
F[x,y]=atxyxy3dt Parametric
Cartesian
x=x(t)
y=y(t)
F[x,y,z]=atz(xyyx)+z(xyxy)+z(xyxy)3 Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
F[y]=y(1+y'2)3/2 Cartesian y=y(x)
x=t
Curvature
F[x,y]=xyyx(x'2+y'2)3/2 Parametric
Cartesian
x=x(t)
y=y(t)
F[r]=r2+2r'2rr(r2+r'2)3/2 Polar r=r(ϕ)
ϕ=t
F[x,y,z]=(zyzy)2+(xzzx)2+(yxxy)2(x'2+y'2+z'2)3/2 Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
F[y]=13y(y)5/359y'2(y)8/3 Cartesian y=y(x)
x=t
Affine curvature
F[x,y]=xyxy(xyxy)5/312[1(xyxy)2/3] Parametric
Cartesian
x=x(t)
y=y(t)
F[x,y,z]=z(xyyx)+z(xyxy)+z(xyxy)(x'2+y'2+z'2)(x'2+y'2+z'2) Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
Torsion of curves
X[x,y]=yyxxy

Y[x,y]=xxyyx
Parametric
Cartesian
x=x(t)
y=y(t)
Dual curve
(tangent coordinates)
X[x,y]=x+ayx'2+y'2

Y[x,y]=yaxx'2+y'2
Parametric
Cartesian
x=x(t)
y=y(t)
Parallel curve
X[x,y]=x+yx'2+y'2xyyx

Y[x,y]=y+xx'2+y'2yxxy
Parametric
Cartesian
x=x(t)
y=y(t)
Evolute
F[r]=t(rr[1]) Intrinsic r=r(s)
s=t
X[x,y]=xxatx'2+y'2dtx'2+y'2

Y[x,y]=yyatx'2+y'2dtx'2+y'2
Parametric
Cartesian
x=x(t)
y=y(t)
Involute
X[x,y]=(xyyx)yx'2+y'2

Y[x,y]=(yxxy)xx'2+y'2
Parametric
Cartesian
x=x(t)
y=y(t)
Pedal curve with pedal point (0;0)
X[x,y]=(x'2y'2)y+2xyxxyyx

Y[x,y]=(x'2y'2)x+2xyyxyyx
Parametric
Cartesian
x=x(t)
y=y(t)
Negative pedal curve with pedal point (0;0)
X[y]=atcos[at1ydt]dt

Y[y]=atsin[at1ydt]dt
Intrinsic y=r(s)
s=t
Intrinsic to
Cartesian
transformation
Metric functionals
F[y]=||y||=Ey2dt Norm
F[x,y]=Exydt Inner product
F[x,y]=arccos[ExydtEx2dtEy2dt] Fubini-Study metric
(inner angle)
Distribution functionals
F[x,y]=x*y=Ex(s)y(ts)ds Convolution
F[y]=Eylnydy Differential entropy
F[y]=Eytdt Expected value
F[y]=E(tEytdt)2ydt Variance

See also