Perron–Frobenius theorem

From formulasearchengine
Revision as of 01:36, 27 January 2014 by en>David Eppstein (See also: rm redlink per WP:SEEALSO)
Jump to navigation Jump to search

In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold.

Definition

A smooth structure on a manifold M is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold M is an atlas for M such that each transition function is a smooth map, and two smooth atlases for M are smoothly equivalent provided their union is again a smooth atlas for M. This gives a natural equivalence relation on the set of smooth atlases.

A smooth manifold is a topological manifold M together with a smooth structure on M.

Maximal smooth atlases

By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural one to one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal atlas and vice versa.

In general, computations with the maximal atlas of a manifold are rather unwieldy. For most applications, it suffices to choose a smaller atlas. For example, if the manifold is compact, then one can find an atlas with only finitely many charts.

Equivalence of smooth structures

Let μ and ν be two maximal atlases on M. The two smooth structures associated to μ and ν are said to be equivalent if there is a homeomorphism f:MM such that μf=ν.

Exotic spheres

John Milnor showed in 1956 that the 7-dimensional sphere admits a smooth structure that is not equivalent to the standard smooth structure. A sphere equipped with a nonstandard smooth structure is called an exotic sphere.

Related structures

The smoothness requirements on the transition functions can be weakened, so that we only require the transition maps to be k-times continuously differentiable; or strengthened, so that we require the transition maps to real-analytic. Accordingly, this gives a Ck or (real-)analytic structure on the manifold rather than a smooth one. Similarly, we can define a complex structure by requiring the transition maps to be holomorphic.

References

Template:Refbegin

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534