Vector clock
In computer science, a scapegoat tree is a self-balancing binary search tree, discovered by Arne Andersson[1] and again by Igal Galperin and Ronald L. Rivest.[2] It provides worst-case O(log n) lookup time, and O(log n) amortized insertion and deletion time.
Unlike most other self-balancing binary search trees that provide worst case O(log n) lookup time, scapegoat trees have no additional per-node memory overhead compared to a regular binary search tree: a node stores only a key and two pointers to the child nodes. This makes scapegoat trees easier to implement and, due to data structure alignment, can reduce node overhead by up to one-third.
Theory
A binary search tree is said to be weight balanced if half the nodes are on the left of the root, and half on the right. An α-weight-balanced is therefore defined as meeting the following conditions:
size(left) <= α*size(node) size(right) <= α*size(node)
Where size can be defined recursively as:
function size(node) if node = nil return 0 else return size(node->left) + size(node->right) + 1 end
An α of 1 therefore would describe a linked list as balanced, whereas an α of 0.5 would only match almost complete binary trees.
A binary search tree that is α-weight-balanced must also be α-height-balanced, that is
height(tree) <= log1/α(NodeCount)
Scapegoat trees are not guaranteed to keep α-weight-balance at all times, but are always loosely α-height-balance in that
height(scapegoat tree) <= log1/α(NodeCount) + 1
This makes scapegoat trees similar to red-black trees in that they both have restrictions on their height. They differ greatly though in their implementations of determining where the rotations (or in the case of scapegoat trees, rebalances) take place. Whereas red-black trees store additional 'color' information in each node to determine the location, scapegoat trees find a scapegoat which isn't α-weight-balanced to perform the rebalance operation on. This is loosely similar to AVL trees, in that the actual rotations depend on 'balances' of nodes, but the means of determining the balance differs greatly. Since AVL trees check the balance value on every insertion/deletion, it is typically stored in each node; scapegoat trees are able to calculate it only as needed, which is only when a scapegoat needs to be found.
Unlike most other self-balancing search trees, scapegoat trees are entirely flexible as to their balancing. They support any α such that 0.5 < α < 1. A high α value results in fewer balances, making insertion quicker but lookups and deletions slower, and vice versa for a low α. Therefore in practical applications, an α can be chosen depending on how frequently these actions should be performed.
Operations
Insertion
Insertion is implemented with the same basic ideas as an unbalanced binary search tree, however with a few significant changes.
When finding the insertion point, the depth of the new node must also be recorded. This is implemented via a simple counter that gets incremented during each iteration of the lookup, effectively counting the number of edges between the root and the inserted node. If this node violates the α-height-balance property (defined above), a rebalance is required.
To rebalance, an entire subtree rooted at a scapegoat undergoes a balancing operation. The scapegoat is defined as being an ancestor of the inserted node which isn't α-weight-balanced. There will always be at least one such ancestor. Rebalancing any of them will restore the α-height-balanced property.
One way of finding a scapegoat, is to climb from the new node back up to the root and select the first node that isn't α-weight-balanced.
Climbing back up to the root requires O(log n) storage space, usually allocated on the stack, or parent pointers. This can actually be avoided by pointing each child at its parent as you go down, and repairing on the walk back up.
To determine whether a potential node is a viable scapegoat, we need to check its α-weight-balanced property. To do this we can go back to the definition:
size(left) <= α*size(node) size(right) <= α*size(node)
However a large optimisation can be made by realising that we already know two of the three sizes, leaving only the third having to be calculated.
Consider the following example to demonstrate this. Assuming that we're climbing back up to the root:
size(parent) = size(node) + size(sibling) + 1
But as:
size(inserted node) = 1.
The case is trivialized down to:
size[x+1] = size[x] + size(sibling) + 1
Where x = this node, x + 1 = parent and size(sibling) is the only function call actually required.
Once the scapegoat is found, the subtree rooted at the scapegoat is completely rebuilt to be perfectly balanced.[2] This can be done in O(n) time by traversing the nodes of the subtree to find their values in sorted order and recursively choosing the median as the root of the subtree.
As rebalance operations take O(n) time (dependent on the number of nodes of the subtree), insertion has a worst case performance of O(n) time. However, because these worst-case scenarios are spread out, insertion takes O(log n) amortized time.
Sketch of proof for cost of insertion
Define the Imbalance of a node v to be the absolute value of the difference in size between its left node and right node minus 1, or 0, whichever is greater. In other words:
Immediately after rebuilding a subtree rooted at v, I(v) = 0.
Lemma: Immediately before rebuilding the subtree rooted at v,
( is Big O Notation.)
Proof of lemma:
Let be the root of a subtree immediately after rebuilding. . If there are degenerate insertions (that is, where each inserted node increases the height by 1), then
,
and
.
Since before rebuilding, there were insertions into the subtree rooted at that did not result in rebuilding. Each of these insertions can be performed in time. The final insertion that causes rebuilding costs . Using aggregate analysis it becomes clear that the amortized cost of an insertion is :
Deletion
Scapegoat trees are unusual in that deletion is easier than insertion. To enable deletion, scapegoat trees need to store an additional value with the tree data structure. This property, which we will call MaxNodeCount simply represents the highest achieved NodeCount. It is set to NodeCount whenever the entire tree is rebalanced, and after insertion is set to max(MaxNodeCount, NodeCount).
To perform a deletion, we simply remove the node as you would in a simple binary search tree, but if
NodeCount <= α*MaxNodeCount
then we rebalance the entire tree about the root, remembering to set MaxNodeCount to NodeCount.
This gives deletion its worst case performance of O(n) time, however it is amortized to O(log n) average time.
Sketch of proof for cost of deletion
Suppose the scapegoat tree has elements and has just been rebuilt (in other words, it is a complete binary tree). At most deletions can be performed before the tree must be rebuilt. Each of these deletions take time (the amount of time to search for the element and flag it as deleted). The deletion causes the tree to be rebuilt and takes (or just ) time. Using aggregate analysis it becomes clear that the amortized cost of a deletion is :
Lookup
Lookup is not modified from a standard binary search tree, and has a worst-case time of O(log n). This is in contrast to splay trees which have a worst-case time of O(n). The reduced node memory overhead compared to other self-balancing binary search trees can further improve locality of reference and caching.
See also
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
External links
- Scapegoat Tree Applet by Kubo Kovac
- Scapegoat Trees: Galperin and Rivest's paper describing scapegoat trees
- On Consulting a Set of Experts and Searching (full version paper)
- Open Data Structures - Chapter 8 - Scapegoat Trees
- ↑ 55 years old Systems Administrator Antony from Clarence Creek, really loves learning, PC Software and aerobics. Likes to travel and was inspired after making a journey to Historic Ensemble of the Potala Palace.
You can view that web-site... ccleaner free download - ↑ 2.0 2.1 One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting
In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang
Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules
Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.
A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running
The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more
There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang