Hyperfunction: Difference between revisions
en>Stevenliuyi m +zh |
en>Enyokoyama |
||
Line 1: | Line 1: | ||
< | {{Redirect|Thin set (set theory)|other uses|Thin set (disambiguation){{!}}Thin set}} | ||
In [[mathematics]], particularly in [[set theory]] and [[model theory]], there are at least three notions of '''stationary set''': | |||
==Classical notion== | |||
If <math> \kappa \,</math> is a [[cardinal number|cardinal]] of uncountable [[cofinality]], <math> S \subseteq \kappa \,,</math> and <math> S \,</math> [[Intersection (set theory)|intersects]] every [[club set]] in <math> \kappa \,,</math> then <math> S \,</math> is called a '''stationary set'''. If a set is not stationary, then it is called a '''thin set'''. This notion should not be confused with the notion of a [[Thin set (Serre)|thin set in number theory]]. | |||
If <math> S \,</math> is a stationary set and <math> C \,</math> is a club set, then their intersection <math> S \cap C \,</math> is also stationary. Because if <math> D \,</math> is any club set, then <math> C \cap D \,</math> is a club set because the intersection of two club sets is club. Thus <math> (S \cap C) \cap D = S \cap (C \cap D) \,</math> is non empty. Therefore <math> (S \cap C) \,</math> must be stationary. | |||
''See also'': [[Fodor's lemma]] | |||
The restriction to uncountable cofinality is in order to avoid trivialities: Suppose <math>\kappa</math> has countable cofinality. Then <math>S\subset\kappa</math> is stationary in <math>\kappa</math> if and only if <math>\kappa\setminus S</math> is bounded in <math>\kappa</math>. In particular, if the cofinality of <math>\kappa</math> is <math>\omega=\aleph_0</math>, then any two stationary subsets of <math>\kappa</math> have stationary intersection. | |||
This is no longer the case if the cofinality of <math>\kappa</math> is uncountable. In fact, suppose <math>\kappa</math> is [[regular cardinal|regular]] and <math>S\subset\kappa</math> is stationary. Then <math>S</math> can be partitioned into <math>\kappa</math> many disjoint stationary sets. This result is due to [[Robert M. Solovay|Solovay]]. If <math>\kappa</math> is a [[successor cardinal]], this result is due to [[Stanislaw Ulam|Ulam]] and is easily shown by means of what is called an '''Ulam matrix'''. | |||
==Jech's notion== | |||
There is also a notion of stationary subset of <math>[X]^\lambda</math>, for <math>\lambda</math> a cardinal and <math>X</math> a set such that <math>|X|\ge\lambda</math>, where <math>[X]^\lambda</math> is the set of subsets of <math>X</math> of cardinality <math>\lambda</math>: <math>[X]^\lambda=\{Y\subset X:|Y|=\lambda\}</math>. This notion is due to [[Thomas Jech]]. As before, <math>S\subset[X]^\lambda</math> is stationary if and only if it meets every club, where a club subset of <math>[X]^\lambda</math> is a set unbounded under <math>\subset</math> and closed under union of chains of length at most <math>\lambda</math>. These notions are in general different, although for <math>X=\omega_1</math> and <math>\lambda=\aleph_0</math> they coincide in the sense that <math>S\subset[\omega_1]^\omega</math> is stationary if and only if <math>S\cap\omega_1</math> is stationary in <math>\omega_1</math>. | |||
The appropriate version of Fodor's lemma also holds for this notion. | |||
==Generalized notion== | |||
There is yet a third notion, model theoretic in nature and sometimes referred to as '''generalized''' stationarity. This notion is probably due to [[Menachem Magidor|Magidor]], [[Matthew Foreman|Foreman]] and [[Saharon Shelah|Shelah]] and has also been used prominently by [[W. Hugh Woodin|Woodin]]. | |||
Now let <math>X</math> be a nonempty set. A set <math>C\subset{\mathcal P}(X)</math> is club (closed and unbounded) if and only if there is a function <math>F:[X]^{<\omega}\to X</math> such that <math>C=\{z:F[[z]^{<\omega}]\subset z\}</math>. Here, <math>[y]^{<\omega}</math> is the collection of finite subsets of <math>y</math>. | |||
<math>S\subset{\mathcal P}(X)</math> is stationary in <math>{\mathcal P}(X)</math> if and only if it meets every club subset of <math>{\mathcal P}(X)</math>. | |||
To see the connection with model theory, notice that if <math>M</math> is a [[Structure (mathematical logic)|structure]] with [[Universe (mathematics)|universe]] <math>X</math> in a countable language and <math>F</math> is a [[Skolem function]] for <math>M</math>, then a stationary <math>S</math> must contain an elementary substructure of <math>M</math>. In fact, <math>S\subset{\mathcal P}(X)</math> is stationary if and only if for any such structure <math>M</math> there is an elementary substructure of <math>M</math> that belongs to <math>S</math>. | |||
== References == | |||
Matthew Foreman, ''Stationary sets, Chang's Conjecture and partition theory'', in Set Theory (The Hajnal Conference) DIMACS Ser. Discrete Math. Theoret. Comp. Sci., 58, Amer. Math. Soc., Providence, RI. 2002 pp. 73–94 | |||
File at [http://www.math.uci.edu/sub2/Foreman/homepage/hajfin.ps] | |||
== External links == | |||
* {{planetmath reference |id=3228|title=Stationary set}} | |||
[[Category:Set theory]] | |||
[[Category:Ordinal numbers]] |
Revision as of 04:35, 4 December 2013
Name: Jodi Junker
My age: 32
Country: Netherlands
Home town: Oudkarspel
Post code: 1724 Xg
Street: Waterlelie 22
my page - www.hostgator1centcoupon.info
In mathematics, particularly in set theory and model theory, there are at least three notions of stationary set:
Classical notion
If is a cardinal of uncountable cofinality, and intersects every club set in then is called a stationary set. If a set is not stationary, then it is called a thin set. This notion should not be confused with the notion of a thin set in number theory.
If is a stationary set and is a club set, then their intersection is also stationary. Because if is any club set, then is a club set because the intersection of two club sets is club. Thus is non empty. Therefore must be stationary.
See also: Fodor's lemma
The restriction to uncountable cofinality is in order to avoid trivialities: Suppose has countable cofinality. Then is stationary in if and only if is bounded in . In particular, if the cofinality of is , then any two stationary subsets of have stationary intersection.
This is no longer the case if the cofinality of is uncountable. In fact, suppose is regular and is stationary. Then can be partitioned into many disjoint stationary sets. This result is due to Solovay. If is a successor cardinal, this result is due to Ulam and is easily shown by means of what is called an Ulam matrix.
Jech's notion
There is also a notion of stationary subset of , for a cardinal and a set such that , where is the set of subsets of of cardinality : . This notion is due to Thomas Jech. As before, is stationary if and only if it meets every club, where a club subset of is a set unbounded under and closed under union of chains of length at most . These notions are in general different, although for and they coincide in the sense that is stationary if and only if is stationary in .
The appropriate version of Fodor's lemma also holds for this notion.
Generalized notion
There is yet a third notion, model theoretic in nature and sometimes referred to as generalized stationarity. This notion is probably due to Magidor, Foreman and Shelah and has also been used prominently by Woodin.
Now let be a nonempty set. A set is club (closed and unbounded) if and only if there is a function such that . Here, is the collection of finite subsets of .
is stationary in if and only if it meets every club subset of .
To see the connection with model theory, notice that if is a structure with universe in a countable language and is a Skolem function for , then a stationary must contain an elementary substructure of . In fact, is stationary if and only if for any such structure there is an elementary substructure of that belongs to .
References
Matthew Foreman, Stationary sets, Chang's Conjecture and partition theory, in Set Theory (The Hajnal Conference) DIMACS Ser. Discrete Math. Theoret. Comp. Sci., 58, Amer. Math. Soc., Providence, RI. 2002 pp. 73–94 File at [1]