Discrete wavelet transform: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
correcting double listing, and claning references
 
See also: a relevant item added
Line 1: Line 1:
== ett lag . Hollister Gallerian ==


Om du någonsin känner att du inte har fått det bästa möjliga service, ring oss och vi kommer att göra det rätt utan extra kostnad .. Du kan hitta massor av [http://www.vistancia.se/res/Flygbolag/about.asp Hollister Gallerian] roliga svar. (Ungefär 2/15) (Naturligtvis, när den gör det fungerar det oftast fungerar bra om än i snigel pace.I förstår inte varför studios inte skickar demoskivor till hårdvarutillverkare för att lösa dessa problem i förväg. <br><br>Också, från projektet lärde jag mig att en del folk utnyttjar personer med dessa funktionshinder. Grädde kan lyfta många rätter, men dess höga halt av mättat fett och kaloriinnehållet spelar exakt gör den till den mest hälsosamma alternativet. Eftersom poolen i princip skjuter ut i havet när det är whale säsong de är där! Det är fantastiskt! Se till att packa din kikare! Vår lägenhet har också en privat BBQ på Lanai, vilket många gör det inte, finner vi det mycket praktiskt!.. <br><br>Det skulle inte vara förvånande att se Google-klon allt ser ut som det fungerar bra för Fråga .. SwissBelhotel Rainforest Kuta. Det skulle vara en bra förbättring i min mening. Jag hör folk prata om krig tidigare av, etc, och samtidigt som jag förstår Devistation, gör jag inte vet att jag verkligen verkligen kan känna det, eftersom jag inte var där, jag såg det, det var [http://www.vistancia.se/res/Flygbolag/about.asp Hollister Stockholm] inte riktigt verkligt för mig och tills jag såg filmen Pearl Harbor, visste jag om det [http://www.brif.se/Pages/class.aspx Nike Shoes] naturligtvis, men aldrig riktigt insett omfattningen förrän . <br><br>Naturligtvis problemet kan vara att de inte genomförde det väl. Jag vet, för jag gjorde några av dessa misstag och gjorde har någon att ge några råd eller tala om för mig vad jag ska säga .. ".. 12. Om du [http://www.brif.se/Scripts/client.aspx Nike Air Force Dam] vill ha en bra plats att montera den, kommer den att passa rätt in i Cubby i nedre mitten streck (mellan ciggy uttag) .. <br><br>NIST har utfärdat särskild publikation SP 800.132 i frågan om lagring av hashade lösenord. Patronen Kören har tillbringat de senaste månaderna förbereder sig för Dallas Police Memorial Day, sade Lozada jr Genom att använda webbplatsen ger du ditt samtycke till återförsäljare Integritet och Use Policy. <br><br>Food and Drug Administration. Folk börjar att bygga minnen med olika typer av meddelanden från ditt företag så att du inte börjar från noll med varje annons. Det här inte har att vara som det är. I svåra fall kan en person gå in i chock. Han måste kunna erbjuda den perfekta förståelse och förklaring på viktiga punkter att patienten kommer att kräva. <br><br>"Bevisen omfattar även direkta skriftliga bevis inklusive finansiella betalningar, e-post, vetenskapliga data och laboratorieresultat som ytterligare bevisar användning, innehav och spridning av prestationshöjande droger av Lance Armstrong och bekräfta nedslående sanningen om bedrägliga verksamhet, ett lag .<ul>
In [[quantum mechanics]], [[information theory]], and [[Fourier analysis]], the '''entropic uncertainty''' or '''Hirschman uncertainty''' is defined as the sum of the temporal and spectral [[Shannon entropy|Shannon entropies]]. It turns out that Heisenberg's [[uncertainty principle]] can be expressed as a lower bound on the sum of these entropies. This is stronger than the usual statement of the uncertainty principle in terms of the product of standard deviations.
 
  <li>[http://americansforcannabis.com/FacbookGeneralForumApplication/profile/jrzlbthi http://americansforcannabis.com/FacbookGeneralForumApplication/profile/jrzlbthi]</li>
 
  <li>[http://www.414300.net/news/html/?462661.html http://www.414300.net/news/html/?462661.html]</li>
 
  <li>[http://meishu.umkid.com/home.php?mod=space&uid=178797&do=blog&quickforward=1&id=25879 http://meishu.umkid.com/home.php?mod=space&uid=178797&do=blog&quickforward=1&id=25879]</li>
 
  <li>[http://blhsalumni.com/forum/read.php?1,8139 http://blhsalumni.com/forum/read.php?1,8139]</li>
 
</ul>


== Search Engine Marketing Nike Shoes ==
In 1957,<ref name=Hirschman>[[Isidore Isaac Hirschman, Jr.|I.I. Hirschman, Jr.]], ''A note on entropy.'' American Journal of Mathematics (1957) pp. 152–156</ref> [[Isidore Isaac Hirschman, Jr.|Hirschman]] considered a function ''f'' and its [[Fourier transform]] ''g'' such that


Var säker på att innehålla några hänvisningar till tester, lämna uppgifter för kunden, att få godkännanden och besluta om Hold och Witness Poäng .. "Deltagarna fick svara på tonen så fort de kunde, vilket indikerar om dess tonhöjd var låg, medium eller hög", sade hon.. <br><br>Det är nästan förunderligt hur vi kan möta människor som är helt kompatibla [http://www.brif.se/Pages/class.aspx Nike Shoes] med oss, bor i . Detta dokument har sedan försvunnit från Longhui hemsida, men huruvida det [http://www.vistancia.se/res/Flygbolag/about.asp Hollister Gallerian] var en direkt order från regeringen (trots allt, är försäljningen av noshörningshorn i Kina ska vara olagligt), vet naturvårdare inte vet.. <br><br>"Folk är mycket oroade över vad som hände med henne," sade Lockwood, en 17 år veteran [http://www.brif.se/Scripts/client.aspx Nike Air Force 1] som är förtroendeman för fackförbundet som representerar cirka 100 museianställda.. Efter att framgångsrikt försöker händerna på byråkratin, när premiärminister Manmohan Singh försökte ta sig in i den politiska arenan, han inför en fundamental problemwhere att lämna sin Rajya Sabha nominering från? Fast, bodde han aldrig i Guwahati, den Narsimha Rao regeringen gav honom en biljett en från Assam kapital.. <br><br>GRATIS Bonus 1 Lifetime Male Enhancement Online Medlemskap Program! Leta efter en guide som kallas Sozumeron Secrets (gör en sökning på google). Alltså när folk klickar sig från din Twitter-profil, till exempel till din hemsida eller blogg, vill du att folk ska kunna hitta din kontaktinformation omedelbart innan de blir distraherad och glömmer att de planerade på att e-posta dig att erbjuda dig en gäst plats på en . <br><br>I tider av Hippokrates en dermatologiska uttryck infördes, utnyttjade ibland närvarande, hade några av villkoren för vilka . Det finns många åtgärder som är direkt eller indirekt inblandade att främja en webbplats för att öka antalet besökare, tillbaka länkar eller inkommande länkar .. <br><br>Det är viktigt, även om du driver ett homebased företag, [http://www.brif.se/Pages/class.aspx Nike Skor] för att se till att du skydda dina personliga tillgångar frombusiness beslag genom att införliva. Våra SEO Pakistan Tjänster inkluderar SEOSearch Engine Optimization, Search Engine Marketing (SEM), SEO Outsourcing Pakistan, SEO Link Building, artikel Skapande och Submission, Internet Marketing Services, Blogg Integration och copywriting, PPC Management Services Pakistan, SEO Konsulttjänster, Flerspråkig sökmotor Optimering, Pressmeddelanden, katalog inlagor, är Social Media Marketing SEO Pakistan dedikerade till att erbjuda bästa SEO tjänster enligt högsta industristandard på de billigaste möjliga priser ... <br><br>Eftersom vi arbetar med Jahve, Yeshuah och Ruach HaKodesh, livsmedel, örter och frekvenser, vi verkligen inte in i västra medicinska området och är . Virchow påstående, "Omnis cellula e cellula" (Alla celler från celler) var den grund på vilken fransk vetenskapsman Louis Pasteur (18.221.895) kom senare att dra ut cell theoryand i processen quash århundraden av spekulationer kring spontan generation (generering av modern livsstil .<ul>
:<math>g(y) \approx \int_{-\infty}^\infty \exp (-2\pi ixy) f(x)\, dx,\qquad f(x) \approx \int_{-\infty}^\infty \exp (2\pi ixy) g(y)\, dy,</math>
 
  <li>[http://bbs.dolly-beauty.com/boke.asp?cftfkajk.showtopic.97953.html http://bbs.dolly-beauty.com/boke.asp?cftfkajk.showtopic.97953.html]</li>
 
  <li>[http://www.squareconnect.com/forum/viewtopic.php?f=7&t=12153 http://www.squareconnect.com/forum/viewtopic.php?f=7&t=12153]</li>
 
  <li>[http://shrmgs.net/news/html/?99467.html http://shrmgs.net/news/html/?99467.html]</li>
 
  <li>[http://auditionlive.com/activity/p/11947/ http://auditionlive.com/activity/p/11947/]</li>
 
</ul>


== Det är därför du kan lita på Nike Air Force ==
where the "<math>\approx</math>" indicates convergence in <math>L^2</math>, and normalized so that (by [[Plancherel theorem|Plancherel's theorem]])


E. Men de var riktigt bra på dessa saker?. Så när fastighetstransaktion är över och det är [http://www.brif.se/Scripts/client.aspx Nike Air Force] dags att ha kul med din familj, denna sida . Det är frestande att öppna upp hela ditt liv till honom, vårtor och allt, om du känner att det går bra. Vi korsade från Seeland till Jylland och sedan bussen passerade genom några otroligt vackra landskap särskilt stränderna, norra Europas! . <br><br>Det är därför du kan lita på, att de nödvändiga uppgifterna samlas in och behandlas på rätt sätt för att ge dig tydlig inblick i en webbplats utvärdering .. Gud örter är mycket effektivare än man läkemedel? (Cialis och Viagra) .. "Det är inte att säga att vi inte bör vara vaksamma på vad statistiken säger oss. <br><br>Du kanske också gillar Henri Bakery i Buckheadhard att kalla en fransk bageri ett hål i väggen, men det är mycket gamla skolan Atlanta och kul att besöka för en kaffe och ost sugrör.. På ett sätt är det förmodligen ett mycket smart sätt att få folk in i de många butiker Swatch varumärke finns över hela världen .. <br><br>Intryck av en tripLongliversNot händerna)) bra övning för ömsesidig förståelse förbättras) Varför kvinnor ger så stor vikt vid utseendet, till det som de ser ut? Nedbrytning är en visning av ett djur i den som samhället och pornofilms död [http://www.vistancia.se/css/upload.asp Abercrombie London] själ? Lagen . <br><br>Att förutse katastrofen öppnade Bushnell maskinen för att finna att dess myntbox hade svämmade över med kvartal, och precis som apan i '2001 'kastar sitt ben i luften, och SNAP vi skär till en satellit, så SNAP vi skär från den överfyllda låda . Jag vet ärligt talat inte om någon av dessa saker hjälpa eller hindra anställningsprocessen, men jag vet att jag aldrig har träffat en professionell headhunter som tränare hans kandidater genom att ta dem shopping på Old Navy och plocka ut årstidljusaste färgerna [http://www.vistancia.se/css/upload.asp Abercrombie And Fitch Sverige] till . <br><br>Bara läsa igenom artiklar och trådar, står bra inblick ut omvänt du inte kan polera en bajskorv. Alla länkar som normalt borde vara dofollow om du inte gör dem nofollow, dofollow Webbplatser är artikel inlämnande webbplatser som tillåter dig att placera länkar i din artikel eller bio som pekar på din webbplats på [http://www.brif.se/Pages/class.aspx Nike Sverige] ett sådant sätt att sökmotorer har möjlighet att följa länken tillbaka till din website.We rekommendera dig att skicka unik artikeln att göra följa artikel inlämnande webbplats, nedan är en omfattande lista över webbplatser artikel inlämnande som du kan skicka till din SEO purposes.List av dofollow artikeln inlämnande webbplatser för . <br><br>Här är en lista som består av 8 essentiella SEO element som en webbplats ägare bör följa för att öka deras. Några andra stufflmhill på Hur man skapar Top Quality Web Graphics.. Det var kul, även om jag föredrar andra platser än denna. Kvinna våldtäktsman är inte så ovanligt.<ul>
:<math> \int_{-\infty}^\infty |f(x)|^2\, dx = \int_{-\infty}^\infty |g(y)|^2 \,dy = 1.</math>
 
 
  <li>[http://bbs.usaflylong.com/forum.php?mod=viewthread&tid=123208&fromuid=476 http://bbs.usaflylong.com/forum.php?mod=viewthread&tid=123208&fromuid=476]</li>
He showed that for any such functions the sum of the Shannon entropies is non-negative:
    
 
  <li>[http://sly.hbcjy.com/lvyou/bbs/forum.php?mod=viewthread&tid=3840491 http://sly.hbcjy.com/lvyou/bbs/forum.php?mod=viewthread&tid=3840491]</li>
:<math> H(|f|^2) + H(|g|^2) = - \int_{-\infty}^\infty |f(x)|^2 \log |f(x)|^2\, dx - \int_{-\infty}^\infty |g(y)|^2 \log |g(y)|^2 \,dy \ge 0. </math>
 
 
  <li>[http://chunwan.ueuo.com/space.php?uid=31426&do=blog&id=374271 http://chunwan.ueuo.com/space.php?uid=31426&do=blog&id=374271]</li>
A tighter bound,
 
 
   <li>[http://acjx.com.cn/bbs/forum.php?mod=viewthread&tid=372438 http://acjx.com.cn/bbs/forum.php?mod=viewthread&tid=372438]</li>
:<math> H(|f|^2) + H(|g|^2) \ge \log \frac e 2,</math>
 
 
</ul>
was conjectured by Hirschman<ref name=Hirschman/> and [[Hugh Everett|Everett]]<ref>[[Hugh Everett]], III.  The Many-Worlds Interpretation of Quantum Mechanics: the theory of the universal wave function. [http://www.pbs.org/wgbh/nova/manyworlds/pdf/dissertation.pdf Everett's Dissertation]</ref> and proven in 1975 by [[William Beckner (mathematician)|W. Beckner]].<ref name=Beckner>W. Beckner, ''Inequalities in Fourier analysis.'' Annals of Mathematics, Vol. 102, No. 6 (1975) pp. 159–182.</ref> The equality holds in the case of [[Gaussian distribution]]s.<ref>{{cite journal |last1=Ozaydin |first1=Murad |last2=Przebinda |first2=Tomasz |year=2004 |title=An Entropy-based Uncertainty Principle for a Locally Compact Abelian Group |journal=Journal of Functional Analysis |volume=215 |issue=1 |pages=241–252  |publisher=Elsevier Inc.|doi= 10.1016/j.jfa.2003.11.008|url=http://redwood.berkeley.edu/w/images/9/95/2002-26.pdf |accessdate=2011-06-23 }}</ref>
 
Note, however, that the above entropic uncertainty function is distinctly ''different'' than the quantum [[Von Neumann entropy]] represented in [[phase space]].
 
==Sketch of proof==
The proof of this tight inequality depends on the so-called '''(''q'',&nbsp;''p'')-norm''' of the Fourier transformation. (Establishing this norm is the most difficult part of the proof.)  From this norm we are able to establish a lower bound on the sum of the (differential) [[Rényi entropy|Rényi entropies]]<math>H_\alpha(|f|^2) + H_\beta(|g|^2),\,</math> where <math>\frac 1\alpha +\frac 1\beta=2.</math>  For simplicity, we consider this inequality only in one dimension; the extension to multiple dimensions is straightforward and can be found in the literature cited.
 
===Babenko–Beckner inequality===
The '''(''q'',&nbsp;''p'')-norm''' of the Fourier transform is defined to be<ref name=Bialynicki>Iwo Bialynicki-Birula. ''Formulation of the uncertainty relations in terms of the Renyi entropies.'' [http://arxiv.org/abs/quant-ph/0608116v2 arXiv:quant-ph/0608116v2]</ref>
 
:<math>\|\mathcal F\|_{q,p} = \sup_{f\in L^p(\mathbb R)} \frac{\|\mathcal Ff\|_q}{\|f\|_p},\text{ where }1 < p \le 2,</math> and <math>\frac 1 p + \frac 1 q = 1.</math>
 
In 1961, Babenko<ref>K.I. Babenko.  ''An ineqality in the theory of Fourier analysis.'' Izv. Akad. Nauk SSSR, Ser. Mat. '''25''' (1961) pp. 531&ndash;542 English transl., Amer. Math. Soc. Transl. (2) '''44''', pp. 115-128</ref> found this norm for ''even'' integer values of ''q''.  Finally, in 1975,
using [[Hermite functions]] as eigenfunctions of the Fourier transform, Beckner<ref name=Beckner/> proved that the value of this norm (in one dimension) for all ''q''  ≥  2  is
:<math>\|\mathcal F\|_{q,p} = \sqrt{p^{1/p}/q^{1/q}}.</math>
Thus we have the '''[[Babenko–Beckner inequality]]''' that
:<math>\|\mathcal Ff\|_q \le \left(p^{1/p}/q^{1/q}\right)^{1/2} \|f\|_p.</math>
 
===Rényi entropy bound===
From this inequality, an expression of the uncertainty principal in terms of the [[Rényi entropy]] can be derived.<ref name=Bialynicki/><ref>H.P. Heinig and M. Smith, ''Extensions of the Heisenberg–Weil inequality.'' Internat. J. Math. & Math. Sci., Vol. 9, No. 1 (1986) pp. 185&ndash;192. [http://www.hindawi.com/GetArticle.aspx?doi=10.1155/S0161171286000212]</ref>
 
Letting <math>g=\mathcal Ff</math>,  2''α''=''p'',  and 2''β''=''q'',  so that  ''1/α + 1/β'' = 2  and   1/2<''α''<1<''β'',  we have
 
:<math>\left(\int_{\mathbb R} |g(y)|^{2\beta}\,dy\right)^{1/2\beta}
      \le \frac{(2\alpha)^{1/4\alpha}}{(2\beta)^{1/4\beta}}
      \left(\int_{\mathbb R} |f(x)|^{2\alpha}\,dx\right)^{1/2\alpha}.
</math>
Squaring both sides and taking the logarithm, we get:
 
:<math>\frac 1\beta \log\left(\int_{\mathbb R} |g(y)|^{2\beta}\,dy\right)
      \le \frac 1 2 \log\frac{(2\alpha)^{1/\alpha}}{(2\beta)^{1/\beta}}
      + \frac 1\alpha \log \left(\int_{\mathbb R} |f(x)|^{2\alpha}\,dx\right).
</math>
 
Multiplying both sides by <math>\frac{\beta}{1-\beta}=-\frac{\alpha}{1-\alpha}</math> reverses the sense of the inequality:
:<math>\frac {1}{1-\beta} \log\left(\int_{\mathbb R} |g(y)|^{2\beta}\,dy\right)
      \ge \frac\alpha{2(\alpha-1)}\log\frac{(2\alpha)^{1/\alpha}}{(2\beta)^{1/\beta}}
      - \frac{1}{1-\alpha} \log \left(\int_{\mathbb R} |f(x)|^{2\alpha}\,dx\right).
</math>
 
Rearranging terms, we finally get an inequality in terms of the sum of the Rényi entropies:
 
:<math>\frac{1}{1-\alpha} \log \left(\int_{\mathbb R} |f(x)|^{2\alpha}\,dx\right)
      + \frac {1}{1-\beta} \log\left(\int_{\mathbb R} |g(y)|^{2\beta}\,dy\right)
      \ge \frac\alpha{2(\alpha-1)}\log\frac{(2\alpha)^{1/\alpha}}{(2\beta)^{1/\beta}};
</math>
 
:<math> H_\alpha(|f|^2) + H_\beta(|g|^2) \ge \frac 1 2 \left(\frac{\log\alpha}{\alpha-1}+\frac{\log\beta}{\beta-1}\right) - \log 2</math>
 
Note that this inequality is symmetric with respect to <math>\alpha</math> and <math>\beta:</math>  We no longer have to assume that '' α<β'';  only that they are positive and not both one, and that  ''1/α + 1/β''  = 2.   To see this symmetry, simply exchange the rôles of  ''i''  and −''i''  in the Fourier transform.
 
===Shannon entropy bound===
Taking the limit of this last inequality as ''α, β''  → 1 yields the Shannon entropy inequality
 
:<math>H(|f|^2) + H(|g|^2) \ge \log\frac e 2,\quad\textrm{where}\quad g(y) \approx \int_{\mathbb R} e^{-2\pi ixy}f(x)\,dx,</math>
 
valid for any base of logarithm as long as we choose an appropriate unit of information, [[bit]], [[Nat (information)|nat]], etc.  The constant will be different, though, for a different normalization of the Fourier transform, (such as is usually used in physics, with normalizations chosen so that ''ħ''=1 ) i.e.
 
:<math>H(|f|^2) + H(|g|^2) \ge \log(\pi e)\quad\textrm{for}\quad g(y) \approx \frac 1{\sqrt{2\pi}}\int_{\mathbb R} e^{-ixy}f(x)\,dx.</math>
 
In this case the dilation of the Fourier transform absolute squared by a factor of 2π  simply adds log (2π) to its entropy.
 
==Entropy versus variance bounds==
The Gaussian or [[normal probability distribution]] plays an important role in the relationship between [[variance]] and [[Differential entropy|entropy]]:  it is a problem of the [[calculus of variations]] to show that this distribution maximizes entropy for a given variance, and at the same time minimizes the variance for a given entropy.  In fact, for any probability density function  ''φ'' on the real line, Shannon's entropy inequality specifies:
:<math>H(\phi) \le \log \sqrt {2\pi eV(\phi)},</math>
where ''H'' is the Shannon entropy and ''V'' is the variance, an inequality that is saturated only in the case of a normal distribution.
 
Moreover the Fourier transform of a Gaussian probability amplitude function is also Gaussian—and the absolute squares of both of these are Gaussian, too.  This  can then be used to derive the usual
Robertson variance uncertainty inequality from the above entropic inequality, enabling the latter to be tighter than the former. That is (for ''ħ''=1), exponentiating the Hirschman inequality and using
Shannon's expression above,
:<math>1/2 \le \exp (H(|f|^2)+H(|g|^2))        /(2e\pi)   \le \sqrt {V(|f|^2)V(|g|^2)}~.</math>
 
Hirschman<ref name=Hirschman/> explained that entropy—his version of entropy was the negative of Shannon's—is a "measure of the concentration of [a probability distribution] in a set of small measure."  Thus a low or large negative Shannon entropy means that a considerable mass of the probability distribution is confined to a set of small measure.  Note that this set of small measure need not be contiguous; a probability distribution can have several concentrations of mass in intervals of small measure, and the entropy may still be low no matter how widely scattered those intervals are.
 
This is not the case with the variance: variance measures the concentration of mass about the mean of the distribution, and a low variance means that a considerable mass of the probability distribution is concentrated in a ''contiguous interval'' of small measure.
 
To formalize this distinction,  we say that two probability density functions  ''φ''<sub>1</sub>  and ''φ''<sub>2</sub> are '''equimeasurable''' if:
 
:<math>\forall \delta > 0,\,\mu\{x\in\mathbb R|\phi_1(x)\ge\delta\} = \mu\{x\in\mathbb R|\phi_2(x)\ge\delta\},</math>
 
where ''μ''  is the [[Lebesgue measure]]. Any two equimeasurable probability density functions have the same Shannon entropy, and in fact the same Rényi entropy, of any order.  The same is not true of variance, however.  Any probability density function has a radially decreasing equimeasurable "rearrangement" whose variance is less (up to translation) than any other rearrangement of the function; and there exist rearrangements of arbitrarily high variance, (all having the same entropy.)
 
==See also==
* [[Inequalities in information theory]]
* [[Uncertainty principle]]
* [[Riesz-Thorin theorem]]
* [[Fourier Transform]]
 
==References==
<references/>
 
==Further reading==
* {{cite doi|10.1016/j.physa.2006.09.019|noedit}}    [http://arxiv.org/abs/math/0605510v1 arXiv:math/0605510v1]
* {{cite doi|10.1103/PhysRevLett.60.1103|noedit}}
{{DEFAULTSORT:Hirschman Uncertainty}}
[[Category:Quantum mechanical entropy]]
[[Category:Information theory]]

Revision as of 01:56, 1 January 2014

In quantum mechanics, information theory, and Fourier analysis, the entropic uncertainty or Hirschman uncertainty is defined as the sum of the temporal and spectral Shannon entropies. It turns out that Heisenberg's uncertainty principle can be expressed as a lower bound on the sum of these entropies. This is stronger than the usual statement of the uncertainty principle in terms of the product of standard deviations.

In 1957,[1] Hirschman considered a function f and its Fourier transform g such that

g(y)exp(2πixy)f(x)dx,f(x)exp(2πixy)g(y)dy,

where the "" indicates convergence in L2, and normalized so that (by Plancherel's theorem)

|f(x)|2dx=|g(y)|2dy=1.

He showed that for any such functions the sum of the Shannon entropies is non-negative:

H(|f|2)+H(|g|2)=|f(x)|2log|f(x)|2dx|g(y)|2log|g(y)|2dy0.

A tighter bound,

H(|f|2)+H(|g|2)loge2,

was conjectured by Hirschman[1] and Everett[2] and proven in 1975 by W. Beckner.[3] The equality holds in the case of Gaussian distributions.[4]

Note, however, that the above entropic uncertainty function is distinctly different than the quantum Von Neumann entropy represented in phase space.

Sketch of proof

The proof of this tight inequality depends on the so-called (qp)-norm of the Fourier transformation. (Establishing this norm is the most difficult part of the proof.) From this norm we are able to establish a lower bound on the sum of the (differential) Rényi entropiesHα(|f|2)+Hβ(|g|2), where 1α+1β=2. For simplicity, we consider this inequality only in one dimension; the extension to multiple dimensions is straightforward and can be found in the literature cited.

Babenko–Beckner inequality

The (qp)-norm of the Fourier transform is defined to be[5]

q,p=supfLp()fqfp, where 1<p2, and 1p+1q=1.

In 1961, Babenko[6] found this norm for even integer values of q. Finally, in 1975, using Hermite functions as eigenfunctions of the Fourier transform, Beckner[3] proved that the value of this norm (in one dimension) for all q ≥ 2 is

q,p=p1/p/q1/q.

Thus we have the Babenko–Beckner inequality that

fq(p1/p/q1/q)1/2fp.

Rényi entropy bound

From this inequality, an expression of the uncertainty principal in terms of the Rényi entropy can be derived.[5][7]

Letting g=f, 2α=p, and 2β=q, so that 1/α + 1/β = 2 and 1/2<α<1<β, we have

(|g(y)|2βdy)1/2β(2α)1/4α(2β)1/4β(|f(x)|2αdx)1/2α.

Squaring both sides and taking the logarithm, we get:

1βlog(|g(y)|2βdy)12log(2α)1/α(2β)1/β+1αlog(|f(x)|2αdx).

Multiplying both sides by β1β=α1α reverses the sense of the inequality:

11βlog(|g(y)|2βdy)α2(α1)log(2α)1/α(2β)1/β11αlog(|f(x)|2αdx).

Rearranging terms, we finally get an inequality in terms of the sum of the Rényi entropies:

11αlog(|f(x)|2αdx)+11βlog(|g(y)|2βdy)α2(α1)log(2α)1/α(2β)1/β;
Hα(|f|2)+Hβ(|g|2)12(logαα1+logββ1)log2

Note that this inequality is symmetric with respect to α and β: We no longer have to assume that α<β; only that they are positive and not both one, and that 1/α + 1/β = 2. To see this symmetry, simply exchange the rôles of i and −i in the Fourier transform.

Shannon entropy bound

Taking the limit of this last inequality as α, β → 1 yields the Shannon entropy inequality

H(|f|2)+H(|g|2)loge2,whereg(y)e2πixyf(x)dx,

valid for any base of logarithm as long as we choose an appropriate unit of information, bit, nat, etc. The constant will be different, though, for a different normalization of the Fourier transform, (such as is usually used in physics, with normalizations chosen so that ħ=1 ) i.e.

H(|f|2)+H(|g|2)log(πe)forg(y)12πeixyf(x)dx.

In this case the dilation of the Fourier transform absolute squared by a factor of 2π simply adds log (2π) to its entropy.

Entropy versus variance bounds

The Gaussian or normal probability distribution plays an important role in the relationship between variance and entropy: it is a problem of the calculus of variations to show that this distribution maximizes entropy for a given variance, and at the same time minimizes the variance for a given entropy. In fact, for any probability density function φ on the real line, Shannon's entropy inequality specifies:

H(ϕ)log2πeV(ϕ),

where H is the Shannon entropy and V is the variance, an inequality that is saturated only in the case of a normal distribution.

Moreover the Fourier transform of a Gaussian probability amplitude function is also Gaussian—and the absolute squares of both of these are Gaussian, too. This can then be used to derive the usual Robertson variance uncertainty inequality from the above entropic inequality, enabling the latter to be tighter than the former. That is (for ħ=1), exponentiating the Hirschman inequality and using Shannon's expression above,

1/2exp(H(|f|2)+H(|g|2))/(2eπ)V(|f|2)V(|g|2).

Hirschman[1] explained that entropy—his version of entropy was the negative of Shannon's—is a "measure of the concentration of [a probability distribution] in a set of small measure." Thus a low or large negative Shannon entropy means that a considerable mass of the probability distribution is confined to a set of small measure. Note that this set of small measure need not be contiguous; a probability distribution can have several concentrations of mass in intervals of small measure, and the entropy may still be low no matter how widely scattered those intervals are.

This is not the case with the variance: variance measures the concentration of mass about the mean of the distribution, and a low variance means that a considerable mass of the probability distribution is concentrated in a contiguous interval of small measure.

To formalize this distinction, we say that two probability density functions φ1 and φ2 are equimeasurable if:

δ>0,μ{x|ϕ1(x)δ}=μ{x|ϕ2(x)δ},

where μ is the Lebesgue measure. Any two equimeasurable probability density functions have the same Shannon entropy, and in fact the same Rényi entropy, of any order. The same is not true of variance, however. Any probability density function has a radially decreasing equimeasurable "rearrangement" whose variance is less (up to translation) than any other rearrangement of the function; and there exist rearrangements of arbitrarily high variance, (all having the same entropy.)

See also

References

  1. 1.0 1.1 1.2 I.I. Hirschman, Jr., A note on entropy. American Journal of Mathematics (1957) pp. 152–156
  2. Hugh Everett, III. The Many-Worlds Interpretation of Quantum Mechanics: the theory of the universal wave function. Everett's Dissertation
  3. 3.0 3.1 W. Beckner, Inequalities in Fourier analysis. Annals of Mathematics, Vol. 102, No. 6 (1975) pp. 159–182.
  4. One of the biggest reasons investing in a Singapore new launch is an effective things is as a result of it is doable to be lent massive quantities of money at very low interest rates that you should utilize to purchase it. Then, if property values continue to go up, then you'll get a really high return on funding (ROI). Simply make sure you purchase one of the higher properties, reminiscent of the ones at Fernvale the Riverbank or any Singapore landed property Get Earnings by means of Renting

    In its statement, the singapore property listing - website link, government claimed that the majority citizens buying their first residence won't be hurt by the new measures. Some concessions can even be prolonged to chose teams of consumers, similar to married couples with a minimum of one Singaporean partner who are purchasing their second property so long as they intend to promote their first residential property. Lower the LTV limit on housing loans granted by monetary establishments regulated by MAS from 70% to 60% for property purchasers who are individuals with a number of outstanding housing loans on the time of the brand new housing purchase. Singapore Property Measures - 30 August 2010 The most popular seek for the number of bedrooms in Singapore is 4, followed by 2 and three. Lush Acres EC @ Sengkang

    Discover out more about real estate funding in the area, together with info on international funding incentives and property possession. Many Singaporeans have been investing in property across the causeway in recent years, attracted by comparatively low prices. However, those who need to exit their investments quickly are likely to face significant challenges when trying to sell their property – and could finally be stuck with a property they can't sell. Career improvement programmes, in-house valuation, auctions and administrative help, venture advertising and marketing, skilled talks and traisning are continuously planned for the sales associates to help them obtain better outcomes for his or her shoppers while at Knight Frank Singapore. No change Present Rules

    Extending the tax exemption would help. The exemption, which may be as a lot as $2 million per family, covers individuals who negotiate a principal reduction on their existing mortgage, sell their house short (i.e., for lower than the excellent loans), or take part in a foreclosure course of. An extension of theexemption would seem like a common-sense means to assist stabilize the housing market, but the political turmoil around the fiscal-cliff negotiations means widespread sense could not win out. Home Minority Chief Nancy Pelosi (D-Calif.) believes that the mortgage relief provision will be on the table during the grand-cut price talks, in response to communications director Nadeam Elshami. Buying or promoting of blue mild bulbs is unlawful.

    A vendor's stamp duty has been launched on industrial property for the primary time, at rates ranging from 5 per cent to 15 per cent. The Authorities might be trying to reassure the market that they aren't in opposition to foreigners and PRs investing in Singapore's property market. They imposed these measures because of extenuating components available in the market." The sale of new dual-key EC models will even be restricted to multi-generational households only. The models have two separate entrances, permitting grandparents, for example, to dwell separately. The vendor's stamp obligation takes effect right this moment and applies to industrial property and plots which might be offered inside three years of the date of buy. JLL named Best Performing Property Brand for second year running

    The data offered is for normal info purposes only and isn't supposed to be personalised investment or monetary advice. Motley Fool Singapore contributor Stanley Lim would not personal shares in any corporations talked about. Singapore private home costs increased by 1.eight% within the fourth quarter of 2012, up from 0.6% within the earlier quarter. Resale prices of government-built HDB residences which are usually bought by Singaporeans, elevated by 2.5%, quarter on quarter, the quickest acquire in five quarters. And industrial property, prices are actually double the levels of three years ago. No withholding tax in the event you sell your property. All your local information regarding vital HDB policies, condominium launches, land growth, commercial property and more

    There are various methods to go about discovering the precise property. Some local newspapers (together with the Straits Instances ) have categorised property sections and many local property brokers have websites. Now there are some specifics to consider when buying a 'new launch' rental. Intended use of the unit Every sale begins with 10 p.c low cost for finish of season sale; changes to 20 % discount storewide; follows by additional reduction of fiftyand ends with last discount of 70 % or extra. Typically there is even a warehouse sale or transferring out sale with huge mark-down of costs for stock clearance. Deborah Regulation from Expat Realtor shares her property market update, plus prime rental residences and houses at the moment available to lease Esparina EC @ Sengkang
  5. 5.0 5.1 Iwo Bialynicki-Birula. Formulation of the uncertainty relations in terms of the Renyi entropies. arXiv:quant-ph/0608116v2
  6. K.I. Babenko. An ineqality in the theory of Fourier analysis. Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961) pp. 531–542 English transl., Amer. Math. Soc. Transl. (2) 44, pp. 115-128
  7. H.P. Heinig and M. Smith, Extensions of the Heisenberg–Weil inequality. Internat. J. Math. & Math. Sci., Vol. 9, No. 1 (1986) pp. 185–192. [1]

Further reading