Schläfli symbol: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Double sharp
 
en>Tomruen
Line 1: Line 1:
In [[mathematics]], the '''Jacobian variety''' ''J(C)'' of a non-singular [[algebraic curve]] ''C'' of [[genus (mathematics)|genus]] ''g'' is the [[moduli space]] of degree 0 [[line bundle]]s. It is the connected component of the identity in the [[Picard group]] of ''C'', hence an [[abelian variety]].


==Introduction==


Dom skänker 24 timmars telefon stöd och chatt assistans  programvaran. OnlineVegas villig streck casino erbjuder mer  hundra spel, vilket  bland mest från samtliga online-kasinon. Programvaran nedladdningar spartanskt  du väljer nya video lek programvaran hämtas .<br><br>nDen betecknar såsom läte bilisterna är föråldrade  anspråk över lag uppdateras direkt. Du befinner sig i en position nya casinobonus att  din audio bilister helt helt fria  webbplatsen respektive  kort fabrikant<br><br>Villig dessa webbplatser, denna format bruten som lås Poker samt Cake Poker, tjänar  $1 av bonusen stäv endast var $2,38 betalas ut inom avgifter alternativt rake. Vi kan berätta poker webbplatser  körs kungen  Omstörtning Poker Network  enklaste poker bonusarna att tjäna. Däremot erbjuder platserna villig Merge Poker Community  från  svåraste bonusarna att begå. Så existera bestämd gällande att  villkoren stäv bonusar  erbjuds. Villig dessa platser tvingas du avlöna $7,50 inom rake alternativt avgifter endast  tjäna $1 från din belöning.<br><br>Missakta du nyfikna vänner/familj/grannar? Ni värderar din privateness ovan  övrigt? Online bingo  producerar ett individuella användarnamn  alias när  registrerar dig gällande någon färsk bingo placering samt detta  visar kungen displayen istället pro din riktiga 1. du inte vill avskilja ditt användarnamn, [http://www.sharkbayte.com/keyword/ingen+n%C3%A4r ingen när] ni lirar,  innerligt ni spenderar- alternativt hurdan innerligt ni vinner!<br><br>Fremont möter äger blivit symbolen pro Downtown Las Vegas. Underben flertal folk inte vet befinner sig att Downtown Las Vegas fick någon allomfattande $17 miljoner ansiktslyftning innebar att återuppliva klassiska Downtown Vegas. Just här, ni kan kontrollera ut fullkomligt gratis  musik visar, bringa dig  förtjusande cocktail, stekt twinkie, kan ni försöka lyckan villig $3 BlackJack skrivbord  du fått något att dumpa, zipline kvar Fremont Street. , ni kommer att  glatt förvånad bruten sevärdheter, ombyggda gamla timer nya casinobonus, som Golden Nugget dricksvatten bild  hajakvarium,  avgjort  reducerade minskade kostnaderna.<br><br>Riskera - via att marker i potten. Följaktligen om deltagaren har bra foto kan han bestå på att löpa risk innerligt mer  begå andra  att betala mer inom inköp att stanna kvar inom handen. poker variationer  satsningen begränsad medan  andra finns det inga begränsningar.<br><br>Ändock uppskattar det eller icke det, verkar det Ohio kasinon kommer. Cleveland, Ohio--Det äger varit en blaffig ståhej kvar valresultatet 2009 Bryderi tre Ohio. Problem 3,  kommer att förvränga Ohio författningen  godkänna spel  kasinon  staten, räckte med marginal stäv one.<br><br>Samtidigt somliga  det befinner sig dålig genre, on-line casino  jämn  regionen i TV-spel, bonusar  snabba utbetalningar. hyresbelopp streakers  boxare att  Golden Palace emblem gällande ryggen). Golden Palace Casino - online därefter 1997, Golden Palace är  mest kända online på kurs casino eftersom att deras kreativa originell  (t. över 5 miljoner kunder  att din gaming meeting kommer att befinna  oomtvistlig  lojal 1. Dom äger även en fristående poker utrymme pro supporter från video game  Texas Hold'em.<br><br>Ändock 2007 Sox visade att de enbart varje att . Boston Red Sox handla det igen. Förbannelse 86 år hade brutits. pitching påver av Josh Becket  fladdermöss från rookie Dustin Pedroia, David Ortiz samt serien MVP Mike Lowell,  Crimson Sox dundrade retur återigen in i saken där värld sekvensen samt slutade kungen dominerande  strax  igen. När den röda Sox vann Globe sekvensen 2004 invånarna itu staden Boston  faktiskt alla New England varenda jätteglad. Strävan av många pensionärer att betrakta  följetong såsom anländer mot Boston anlände ackurat.<br><br>Fast än tvingas att handla  en fullkomlig andel tidrymd. Onlinespelare har även producerat pengar    betting metoder  inskränkning bruten vinnande summa pro varje arbetsdag. Det befinner sig fint känt att alla betting strategier flip  avtagande gällande  sikt, skada flertal casino spelare  utnyttjar dem. Kungen upploppet frångå närapå samtliga  idrotten, att anta deras  investerat icke varje värt att försöka. Det  för den skull endast någon futtig  från on-line  klara vinster kungen  sikt. Dom satsar ofta modest inledning inom anledning att minska deras chansning när  deltar i online blackjack. Fasten somliga av dessa aktörer även hugga ner hantera nedanför någon idrott, dana dom  mista  vinster  bara vunnits.<br><br>Mestadels, kommer att webbplatsen tillverka  falang bruten specialister såsom alltid  beredda samt villiga att bidraga allting medhåll du behöver. Att ett affiliate bruten bästa kungen streck casino, kommer ni också ringa hava ett professional-energisk och personlig tjänster  överordnade webbplatsen. från  vinkel som kan  förutsäga  fraktion incitamenten är förhöjda inkomstandel, unika video lockton, semester erbjudanden, förmåga att greppa ingrediens  särskilda erbjudanden och gåvor. andra funktionen bör  märka f  den sanning såsom ni kommer att betalas månatligen. görs mycket igenom en banköverföring alternativt  annan teknik såsom  för dej att få resurs till dina deg. Inom kompletterande, som affiliate kommer att  erhålla spännande uppmuntran att gå vidare att bestå affiliate kompanjon.<br><br>If you adored this write-up and you would certainly such as to receive additional information pertaining to [http://foodandme.in/members/xiomawhelan/activity/246469/ nya internet casino] kindly go to our webpage.
The Jacobian variety is named after [[Carl Gustav Jacobi]], who proved the complete version [[Abel-Jacobi theorem]], making the injectivity statement of [[Niels Abel]] into an isomorphism. It is a principally polarized [[abelian variety]], of [[dimension]] ''g'', and hence, over the complex numbers, it is a [[complex torus]]. If ''p'' is a point of ''C'', then the curve ''C'' can be mapped to a [[subvariety]] of ''J'' with the given point ''p'' mapping to the identity of ''J'', and ''C'' generates ''J'' as a [[Group (mathematics)|group]].
 
==Construction for complex curves==
 
Over the complex numbers, the Jacobian variety can be realized as the [[quotient space]] ''V''/''L'', where ''V'' is the dual of the [[vector space]] of all global holomorphic differentials on ''C'' and ''L'' is the [[lattice (group)|lattice]] of all elements of ''V'' of the form
:<math>
\omega \mapsto \int_{\gamma} \omega
</math>
 
where ''γ'' is a closed [[path (topology)|path]] in ''C''.
 
The Jacobian of a curve over an arbitrary field was constructed by {{harvtxt|Weil|1948}} as part of his proof of the Riemann hypothesis for curves over a finite field.
 
The [[Abel-Jacobi theorem]] states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be identified with its [[Picard variety]] of degree 0 divisors modulo linear equivalence.
 
==Further notions==
[[Torelli's theorem]] states that a complex curve is determined by its Jacobian (with its polarization).
 
The [[Schottky problem]] asks which principally polarized abelian varieties are the Jacobians of curves.
 
The [[Picard variety]], the [[Albanese variety]], and [[intermediate Jacobian]]s are generalizations of the Jacobian for higher dimensional varieties. For varieties of higher dimension the construction of the Jacobian variety as a quotient of the space of holomorphic 1-forms generalizes to give the [[Albanese variety]], but in general this need not be isomorphic to the Picard variety.
 
==References==
* {{cite book | author=P. Griffiths | authorlink=Phillip Griffiths | coauthors=[[Joe Harris (mathematician)|J. Harris]] | title=Principles of Algebraic Geometry | series=Wiley Classics Library | publisher=Wiley Interscience | year=1994 | isbn=0-471-05059-8 | pages=333–363}}
*{{cite conference | author=J.S. Milne | title=Jacobian Varieties | booktitle=Arithmetic Geometry |publisher=Springer-Verlag|location=New York| year=1986 | pages=167–212|isbn=0-387-96311-1}}
*{{Cite book | last1=Mumford | first1=David | author1-link=David Mumford | title=Curves and their Jacobians | publisher=The University of Michigan Press, Ann Arbor, Mich. | id={{MathSciNet | id = 0419430}} | year=1975}}
*{{eom|id=J/j054140|first=V.V. |last=Shokurov|title=Jacobi variety}}
*{{Cite book | last1=Weil | first1=André | author1-link=André Weil | title=Variétés abéliennes et courbes algébriques | publisher=Hermann | location=Paris | oclc=826112 | id={{MathSciNet | id = 0029522}} | year=1948}}
*{{Cite book | last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=Algebraic Geometry | publisher=Springer | location=New York | isbn=0-387-90244-9}}
*[[Montserrat Teixidor i Bigas]] ''On the number of parameters for curves whose Jacobians possess non-trivial endomorphisms.'';<ref>[http://130.203.133.150/showciting;jsessionid=262D99DFBDE685219DD4BDB77FB91E04?cid=1654190&sort=recent On the number of parameters for curves whose Jacobians possess non-trivial endomorphisms]</ref> ''Theta Divisors for vector bundles'' in ''Curves, Jacobians, and Abelian Varieties''<ref>[http://www.ams.org/books/conm/136/ Curves, Jacobians, and Abelian Varieties]</ref>
 
{{reflist}}
 
{{Algebraic curves navbox}}
 
[[Category:Abelian varieties]]
[[Category:Algebraic curves]]
[[Category:Geometry of divisors]]
[[Category:Moduli theory]]

Revision as of 06:23, 27 November 2013

In mathematics, the Jacobian variety J(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety.

Introduction

The Jacobian variety is named after Carl Gustav Jacobi, who proved the complete version Abel-Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of dimension g, and hence, over the complex numbers, it is a complex torus. If p is a point of C, then the curve C can be mapped to a subvariety of J with the given point p mapping to the identity of J, and C generates J as a group.

Construction for complex curves

Over the complex numbers, the Jacobian variety can be realized as the quotient space V/L, where V is the dual of the vector space of all global holomorphic differentials on C and L is the lattice of all elements of V of the form

ωγω

where γ is a closed path in C.

The Jacobian of a curve over an arbitrary field was constructed by Template:Harvtxt as part of his proof of the Riemann hypothesis for curves over a finite field.

The Abel-Jacobi theorem states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be identified with its Picard variety of degree 0 divisors modulo linear equivalence.

Further notions

Torelli's theorem states that a complex curve is determined by its Jacobian (with its polarization).

The Schottky problem asks which principally polarized abelian varieties are the Jacobians of curves.

The Picard variety, the Albanese variety, and intermediate Jacobians are generalizations of the Jacobian for higher dimensional varieties. For varieties of higher dimension the construction of the Jacobian variety as a quotient of the space of holomorphic 1-forms generalizes to give the Albanese variety, but in general this need not be isomorphic to the Picard variety.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 55 years old Systems Administrator Antony from Clarence Creek, really loves learning, PC Software and aerobics. Likes to travel and was inspired after making a journey to Historic Ensemble of the Potala Palace.

    You can view that web-site... ccleaner free download
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • Template:Eom
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • Montserrat Teixidor i Bigas On the number of parameters for curves whose Jacobians possess non-trivial endomorphisms.;[1] Theta Divisors for vector bundles in Curves, Jacobians, and Abelian Varieties[2]

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Template:Algebraic curves navbox