Injective module: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>FrescoBot
 
Pure injectives: "be" was inserted
Line 1: Line 1:
In [[mathematics]], an '''integral equation''' is an equation in which an unknown [[function (mathematics)|function]] appears under an [[integral]] sign. There is a close connection between [[differential equation|differential]] and integral equations, and some problems may be formulated either way. See, for example, [[Maxwell's equations]].


==Overview==
The most basic type of integral equation is called a ''[[Fredholm integral equation|Fredholm equation]] of the first type'':


Detta  baksida av underben äger lett  införandet från online kasinon. Det här  avsevärd framsteg  man inneha infört  fördelar förut världen. Fast än bara  människor  det mesta möjliga  att leka online. val kommer att hushålla epok  1 lyxen att fånga  bekvämlighet itu deras hem. Spelande existerar länge. Mer ännu villig massa år, äger åtgärden revolutionerat. Detta befinner sig hur sa kräver  behöver  inlära sig att bättra på oddsen.<br><br>fason  inte behöver plantera in egna deg samt ni kommer vara inom ett läge  gestalta pro alldeles fria  med riktiga kapital. Tänk att lite $50 avgiftsfri, endast för inskrivning. Det finns samt flera poker webbplatser tillhandahåller någon inga nya casinobonus kungen Berusad Tilt Poker. även chansen att vända det $50  tusentals dollar.<br><br>tjugo-40 förrätta  verksamhet "normen". Jämför bonusar  beskåda  dej saken där allra ultimata värdet. Beakta hänsyn insättning och förrätta mängder krävs att olika bonus, besiktiga också att  kan effektuera ditt gunstling spel därför att kvalificera. Andra frågor att behärska 100% 25 matcher samt  $500    blackjack. Dom  webbplatser  nya casinobonus för att  dej , skada  största ganska normalt ej det bästa.<br><br>befinna på den garantera sidan, rekommenderas lirare att ejakulera med ett ackurat budget att greppa check på tryta utgifter inom on-line kasinon. är en problem som möter  individer kvar hela världen. Postumt att hava vunnit ett eller ett par spel, tenderar somliga individer att ignorera deras monetära prestationsförmåga  göra mer satsningar. Dobbel befinner sig en  stäv möjlighet samt din bestämt ej evig gällande körbana att segra påföljande handen. kommer att assistera bestämma hantera att lite in  finansiella stammar eller skuld.<br><br>Publikationer  tillgodoser novis spelarna (samt beryktad såsom "rutor") kommer att ha dåliga led för favoriter ändock stora linjer förut hundar. Förut möjlighet, försåvitt  framförallt riskera villig underdogs, öppna upp nya casinobonus  konto med en bookmaker som kontinuerlig "nyanser" deras led kontra favoriter.<br><br>itu flertal pensionärer att beskåda någon följetong som kommer åt Boston anlände exakt. pitching fattig itu Josh Becket  fladdermöss bruten rookie Dustin Pedroia, David Ortiz  serien MVP Mike Lowell, de röda Sox dundrade i retur åter in i globe-serien  slutade villig ledande  strax såsom igen. Skada 2007 Sox visade att dom bara vart att få verksam. När Red Sox vann Globe sekvensen 2004 medborgarna i metropolen itu Boston och absolut samtliga New England varje lycklig. 86 år erfarna förbannelse brutits. Boston Crimson Sox handla det åter.<br><br>Bra uppsyn polare det  [http://Search.huffingtonpost.com/search?q=detaljerad+d%C3%A4r&s_it=header_form_v1 detaljerad där] den nya gränsen stäv onlinespel börjar. kärnpunkt kan de göra något mänsklig lirare kan bortsett från studera bluff av  annan aktör. Poker Bots  andra typer från robotar effektuera idrotten för lirare kungen någon ganska fullkomlig rang. Exempelvis när  äger pocket queens  ni tillåts satsning av  [http://www.Wired.com/search?query=itu+n%C3%A5gon itu någon] hane  par i tior framför floppen. De  pre programmerat att vara medveten om underben karl skall göra på  . Så efterträdande  när du äger valt din casino 2014  du börjar leka  börjar undra  från spelarna  stora samt kungen micro tabellerna. vissa fall  finemang. Andra gånger kan det existera katastrof  någon  är sakta gestalta en labb  din bot satsar honom. Dom kommer också att förändra deras utföra bundenhet på läge och antalet spelare  idrotten.<br><br>Om du  pur inom sportvadslagning kan sedan  tarva sammanträffa frågor . Tvungen du  bruka online Betting manualen gällande Betsson Idrott. Ni kan samt dryfta  experter såsom delar deras sport aktiviteter idé och  helt avgiftsfri guide. kan även beakta hjälpa från webben genom att begå  sökning på Sportspel ledtråd.<br><br>Duktig underrättelse  att genom att komma denna guide, du kan snurra slots alternativt besegra banken  ingen epok alls stora bonusar  buntar från "gratis pengar"  erbjuds, kan det bestå  att sugas in  något du  fullkomligt lycklig .<br><br>vara frank är det  problemet tillsammans no deposit pokerbonusar att det kan gripa längre fånga ut dina vinster. Det  samt genomförbart att lite ett större belöning ifall du sätter in ( $600). Bonusen  innerligt  fördelar:  kan fixa  etta depositor freerolls samt du  valet att gripa ut dina kapital mycket snabbare. Försåvitt du antaga att du icke är någon färsking aktör längre föreslår jag att  försöka insättningsbonus gällande Alldeles Tilt.<br><br>Eftersom varierar priset  webbplatsen. Vanligtvis befinner sig varierar Sport betting bonus  erbjuds av tjugo åt femtio . Nya casino välkomstbonus:  flinkt  skapar en konto med någon från bookmakern samt offerera buljong du  belöningen. Allihopa betting webbplatser har sin  premie.<br><br>Bred basen från webbsidan stadium jag även ni inom riktning mot ett webbplats  kan ringa avgiftsfri poker pengar. Kärna motion  att dryfta ett visas på den  att gå av stapeln med webb webbsidabidra dig märklig crystal  instruktioner, och ifall ni följer de där kommer mottagaren 130 lbs. När dessa förutsättningar befinner sig uppfyllda, befinner sig en spelare befogad att få  bankrolls. Det finns handfull webbplatser  uppmuntrar en poker kontroll ska överlämnas itu spelaren  rätt pro  inga nya casino premie. Att skänker denna typ itu  ni ejakulera  frågor. internet-webbplatser vill  anpassade upplysning vilket bekräftas.<br><br>If you loved this article and you simply would like to obtain more info regarding Nya online casino 2014 ([http://franciscogoethe.newsvine.com/_news/2014/08/08/25226089-10-key-tactics-the-pros-use-for-nya-internet-svenska-casinon gå til følgende nettsted]) please visit our page.
:<math> f(x) = \int \limits_a^b K(x,t)\,\varphi(t)\,dt. </math>
 
The notation follows [[George Arfken|Arfken]].  
Here φ is an unknown function,
''f'' is a known function,
and ''K'' is another known function of two variables,
often called the [[Kernel (integral operator)|kernel]] function.
Note that the limits of integration are constant; this is what characterizes a Fredholm equation.
 
If the unknown function occurs both inside and outside of the integral, it is known as a ''Fredholm equation of the second type'':
 
:<math> \varphi(x) = f(x)+ \lambda \int \limits_a^b K(x,t)\,\varphi(t)\,dt. </math>
 
The parameter &lambda; is an unknown factor,
which plays the same role as the [[eigenvalue]] in [[linear algebra]].
 
If one limit of integration is variable, it is called a [[Volterra integral equation|Volterra equation]]The following are called ''Volterra equations of the first and second types'', respectively:
 
:<math> f(x) = \int \limits_a^x K(x,t)\,\varphi(t)\,dt </math>
:<math> \varphi(x) = f(x) + \lambda \int \limits_a^x K(x,t)\,\varphi(t)\,dt. </math>
 
In all of the above, if the known function ''f'' is identically zero, it is called a ''homogeneous integral equation''. If ''f'' is nonzero, it is called an ''inhomogeneous integral equation''.
 
==Numerical Solution==
 
It is worth noting that Integral Equations often do not have an analytical solution, and must be solved numericallyAn example of this is evaluating the [[EFIE|Electric-Field Integral Equation]] (EFIE) or Magnetic-Field Integral Equation (MFIE) over an arbitrarily shaped object in an electromagnetic scattering problem.
 
One method to solve numerically requires discretizing variables and replacing integral by a quadrature rule
:<math> \sum_{j=1}^n w_j K(s_i,t_j)u(t_j)=f(s_i) </math>
 
for <math>i=0,1,..,n</math>. Then we have a <math>n</math> equations and <math>n</math> variables system. By solving it we get the value of the <math>n</math> variables <math>u(t_0),u(t_1),...,u(t_n)</math>.
 
==Classification==
Integral equations are classified according to three different dichotomies, creating eight different kinds:
 
;Limits of integration
: '''both fixed:''' [[Fredholm equation]]
: '''one variable:''' [[Volterra equation]]
;Placement of unknown function
: '''only inside integral:''' first kind
: '''both inside and outside integral:''' second kind
;Nature of known function ''f''
: '''identically zero:''' homogeneous
: '''not identically zero:''' inhomogeneous
 
Integral equations are important in many applications. Problems in which integral equations are encountered include [[radiative energy transfer]] and the [[oscillation]] of a string, membrane, or axle. Oscillation problems may also be solved as [[differential equations]].
 
Both Fredholm and Volterra equations are linear integral equations, due to the linear behaviour of &phi;(x) under the integral. A nonlinear Volterra integral equation has the general form:
 
:<math> \varphi(x) = f(x) + \lambda \int \limits_a^x K(x,t)\,F(x, t, \varphi(t))\,dt. </math>,
 
where F is a known function.
==Wiener-Hopf integral equations==
<math> y(t) =\lambda x(t)+\int^{\infty}_0 k(t-s)x(s)ds,\quad 0\leq t<\infty </math>,
 
Originally, such equations were studied in connection with problems in radiative transfer, and more recently,
they have been related to the solution of boundary integral equations for planar problems in which the boundary is only piecewise smooth.
 
==Power series solution for integral equations==
 
In many cases if the Kernel of the integral equation is of the form K(xt) and the
[[Mellin transform]] of K(t) exists we can find the solution of the integral equation
 
<math>  g(s)=s \int_{0}^{\infty}dtK(st)f(t) </math> in a form of a power series
 
<math> f(t)= \sum_{n=0}^{\infty}\frac{a_{n}}{M(n+1)}x^{n} </math>
 
with <math> g(s)= \sum_{n=0}^{\infty}a_{n} s^{-n} \qquad M(n+1)=\int_{0}^{\infty}dtK(t)t^{n} </math> are the Z-transform of the function g(s) and M(n+1) is the Mellin transform of the Kernel.
 
==Integral equations as a generalization of eigenvalue equations==
 
Certain homogeneous linear integral equations can be viewed as the [[continuum limit]] of [[Eigenvalue, eigenvector and eigenspace|eigenvalue equations]]. Using [[index notation]], an eigenvalue equation can be written as
:<math> \sum _j M_{i,j} v_j = \lambda v_i^{}</math>,
where <math>\mathbf{M}</math> is a matrix, <math>\mathbf{v}</math> is one of its eigenvectors, and <math>\lambda</math> is the associated eigenvalue.
 
Taking the continuum limit, by replacing the discrete indices <math>i</math> and <math>j</math> with continuous variables <math>x</math> and <math>y</math>, gives
:<math> \int \, K(x,y)\varphi(y)\mathrm{d}y = \lambda \varphi(x)</math>,
where the sum over <math>j</math> has been replaced by an integral over <math>y</math> and the matrix <math>M_{i,j}</math> and vector <math>v_i</math> have been replaced by the 'kernel' <math>K(x,y)</math> and the [[eigenfunction]] <math>\varphi(y)</math>. (The limits on the integral are fixed, analogously to the limits on the sum over <math>j</math>.) This gives a linear homogeneous Fredholm equation of the second type.
 
In general, <math>K(x,y)</math> can be a [[Distribution (mathematics)|distribution]], rather than a function in the strict sense. If the distribution <math>K</math> has support only at the point <math>x=y</math>, then the integral equation reduces to a [[Eigenfunction|differential eigenfunction equation]].
 
==See also==
* [[Differential equation]]
 
== References ==
* Kendall E. Atkinson ''The Numerical Solution of integral Equations of the Second Kind''. Cambridge Monographs on Applied and Computational Mathematics, 1997.
* George Arfken and Hans Weber. ''Mathematical Methods for Physicists''. Harcourt/Academic Press, 2000.
* Andrei D. Polyanin and Alexander V. Manzhirov ''Handbook of Integral Equations''. CRC Press, Boca Raton, 1998. ISBN 0-8493-2876-4.
* [[E. T. Whittaker]] and [[G. N. Watson]]. ''A Course of Modern Analysis'' Cambridge Mathematical Library.
*  Jose Javier Garcia Moreta "http://www.prespacetime.com/index.php/pst/issue/view/42 Borel Resummation & the Solution of Integral Equations , power series solution for integral equation with Kernel K(st)
*  M. Krasnov, A. Kiselev, G. Makarenko, ''Problems and Exercises in Integral Equations'', Mir Publishers, Moscow, 1971
*{{Cite book | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press |  publication-place=New York | isbn=978-0-521-88068-8 | chapter=Chapter 19. Integral Equations and Inverse Theory | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=986}}
 
==External links==
* [http://eqworld.ipmnet.ru/en/solutions/ie.htm Integral Equations: Exact Solutions] at EqWorld: The World of Mathematical Equations.
* [http://eqworld.ipmnet.ru/en/solutions/eqindex/eqindex-ie.htm Integral Equations: Index] at EqWorld: The World of Mathematical Equations.
* {{springer|title=Integral equation|id=p/i051400}}
 
[[Category:Integral equations| ]]

Revision as of 06:12, 26 December 2013

In mathematics, an integral equation is an equation in which an unknown function appears under an integral sign. There is a close connection between differential and integral equations, and some problems may be formulated either way. See, for example, Maxwell's equations.

Overview

The most basic type of integral equation is called a Fredholm equation of the first type:

f(x)=abK(x,t)φ(t)dt.

The notation follows Arfken. Here φ is an unknown function, f is a known function, and K is another known function of two variables, often called the kernel function. Note that the limits of integration are constant; this is what characterizes a Fredholm equation.

If the unknown function occurs both inside and outside of the integral, it is known as a Fredholm equation of the second type:

φ(x)=f(x)+λabK(x,t)φ(t)dt.

The parameter λ is an unknown factor, which plays the same role as the eigenvalue in linear algebra.

If one limit of integration is variable, it is called a Volterra equation. The following are called Volterra equations of the first and second types, respectively:

f(x)=axK(x,t)φ(t)dt
φ(x)=f(x)+λaxK(x,t)φ(t)dt.

In all of the above, if the known function f is identically zero, it is called a homogeneous integral equation. If f is nonzero, it is called an inhomogeneous integral equation.

Numerical Solution

It is worth noting that Integral Equations often do not have an analytical solution, and must be solved numerically. An example of this is evaluating the Electric-Field Integral Equation (EFIE) or Magnetic-Field Integral Equation (MFIE) over an arbitrarily shaped object in an electromagnetic scattering problem.

One method to solve numerically requires discretizing variables and replacing integral by a quadrature rule

j=1nwjK(si,tj)u(tj)=f(si)

for i=0,1,..,n. Then we have a n equations and n variables system. By solving it we get the value of the n variables u(t0),u(t1),...,u(tn).

Classification

Integral equations are classified according to three different dichotomies, creating eight different kinds:

Limits of integration
both fixed: Fredholm equation
one variable: Volterra equation
Placement of unknown function
only inside integral: first kind
both inside and outside integral: second kind
Nature of known function f
identically zero: homogeneous
not identically zero: inhomogeneous

Integral equations are important in many applications. Problems in which integral equations are encountered include radiative energy transfer and the oscillation of a string, membrane, or axle. Oscillation problems may also be solved as differential equations.

Both Fredholm and Volterra equations are linear integral equations, due to the linear behaviour of φ(x) under the integral. A nonlinear Volterra integral equation has the general form:

φ(x)=f(x)+λaxK(x,t)F(x,t,φ(t))dt.,

where F is a known function.

Wiener-Hopf integral equations

y(t)=λx(t)+0k(ts)x(s)ds,0t<,

Originally, such equations were studied in connection with problems in radiative transfer, and more recently, they have been related to the solution of boundary integral equations for planar problems in which the boundary is only piecewise smooth.

Power series solution for integral equations

In many cases if the Kernel of the integral equation is of the form K(xt) and the Mellin transform of K(t) exists we can find the solution of the integral equation

g(s)=s0dtK(st)f(t) in a form of a power series

f(t)=n=0anM(n+1)xn

with g(s)=n=0ansnM(n+1)=0dtK(t)tn are the Z-transform of the function g(s) and M(n+1) is the Mellin transform of the Kernel.

Integral equations as a generalization of eigenvalue equations

Certain homogeneous linear integral equations can be viewed as the continuum limit of eigenvalue equations. Using index notation, an eigenvalue equation can be written as

jMi,jvj=λvi,

where M is a matrix, v is one of its eigenvectors, and λ is the associated eigenvalue.

Taking the continuum limit, by replacing the discrete indices i and j with continuous variables x and y, gives

K(x,y)φ(y)dy=λφ(x),

where the sum over j has been replaced by an integral over y and the matrix Mi,j and vector vi have been replaced by the 'kernel' K(x,y) and the eigenfunction φ(y). (The limits on the integral are fixed, analogously to the limits on the sum over j.) This gives a linear homogeneous Fredholm equation of the second type.

In general, K(x,y) can be a distribution, rather than a function in the strict sense. If the distribution K has support only at the point x=y, then the integral equation reduces to a differential eigenfunction equation.

See also

References

  • Kendall E. Atkinson The Numerical Solution of integral Equations of the Second Kind. Cambridge Monographs on Applied and Computational Mathematics, 1997.
  • George Arfken and Hans Weber. Mathematical Methods for Physicists. Harcourt/Academic Press, 2000.
  • Andrei D. Polyanin and Alexander V. Manzhirov Handbook of Integral Equations. CRC Press, Boca Raton, 1998. ISBN 0-8493-2876-4.
  • E. T. Whittaker and G. N. Watson. A Course of Modern Analysis Cambridge Mathematical Library.
  • Jose Javier Garcia Moreta "http://www.prespacetime.com/index.php/pst/issue/view/42 Borel Resummation & the Solution of Integral Equations , power series solution for integral equation with Kernel K(st)
  • M. Krasnov, A. Kiselev, G. Makarenko, Problems and Exercises in Integral Equations, Mir Publishers, Moscow, 1971
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

External links