Semiprime: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>PrimeHunter
Undid revision 498840230 by 80.203.19.122 (talk). This was discusssed on talk, we should be correct and some sources overlook this so it isn't that obvious
 
en>Enric Naval
m Reverted edits by 103.246.106.10 (talk) to last version by PrimeHunter
Line 1: Line 1:
Hierro Tema llena todos los órganos dentro de su físico con la energía Qi y mejora dentro de la reserva físico. En consecuencia, el organismo rejuvenece y mantiene su fuerza y ​​energía, incluso a lo profundo vejez. La idea de hierro Tema incluye doce armas puentes: Tan (dureza), ghd también han llegado con un caso de cierre a presión para colocar su bolsa de transporte en el interior de la impresión del leopardo. La carcasa exterior es fuerte por lo que no hay daño vendrá de tu styler, más el símbolo de oro en el frente que dice ghd, auténtica muestra de esta nueva ghd rara edición limitada a ser una de sus mejores galas.
In [[mathematics]], '''pointwise convergence''' is one of various senses in which a [[sequence]] of functions can [[Limit (mathematics)|converge]] to a particular function.<ref>{{cite book | last=Rudin | first=Walter | authorlink = Walter Rudin | title=Principles of Mathematical Analysis | publisher=[[McGraw-Hill]] | year=1976 | isbn=0-07-054235-X}}</ref><ref>{{cite book | last=Munkres | first=James R. | authorlink=James Munkres | title=Topology | edition=2nd | publisher=[[Prentice Hall]] | year=2000 | isbn=0-13-181629-2}}</ref>


ownload de (c) reamstime.com Para obtener detalles adicionales sobre la ghd raro ir a comparar ghd para un desglose exhaustivo sobre las características y funciones Stylers. Una pequeña empresa en el Reino Unido que puede reparar sus alisadores de pelo GHD han roto sus planchas ghd pelo? A continuación, asegúrese que usted aparece no más como se puede reparar rápidamente los alisadores de pelo ghd. cocina Marche comprende una mezcla abundante de comida rústica y mariscos.
==Definition==
Suppose { ''f''<sub>''n''</sub> } is a sequence of [[function (mathematics)|functions]] sharing the same domain and [[codomain]] (for the moment, we defer specifying the nature of the values of these functions, but the reader may take them to be [[real number]]s). The sequence { ''f''<sub>''n''</sub> } '''converges pointwise''' to ''f'', often written as


  El vino de primera necesidad en la zona es verdicghdo, un juvenil, fresco consumen que se complementa perfectamente con pescados y mariscos. puedo decir con bastante confianza en sí mismo que en función de mis actividades, el ejercicio físico útil para aliviar los signos y síntomas de asma y hacer frente a sus numerosos inconvenientes es Yoga. Debido a sus posturas y estiramientos suaves y también la respiración profunda asociada con el yoga, ciertas poses-cuando se usa correctamente, puede ser muy útil para suavizar la inflamación crónica con los tubos bronghdal (vías respiratorias) que causa inflamación y estrechamiento (constricción) de las vías respiratorias como será la situación straighener ghd en pacientes con asma.
:<math>\lim_{n\rightarrow\infty}f_n=f\ \mbox{pointwise},</math>


Además de las barras de estilo y otros equipos relacionados con el estilo, también tendría a bolsa a lo largo de una gran variedad de adaptadores de voltaje y convertidores de corriente. Sin embargo, ghd ya ha pensado en esto y ha ido un paso por delante. alisadores de pelo ghd vienen con una función de voltaje universal que se puede utilizar en la mayoría de los países por lo que puede llamar la atención con su estilo de pelo no importa en qué lugar del mundo al que viaje.
if and only if


  El control digital de la temperatura es otra característica inherente de los alisadores de pelo ghd. Es casi imposible utilizar el principio de ne-talla única para todos? Cuando se trata de la aplicación de calor en el cabello. instancias son difíciles por lo que no todos tenemos libre para comprometerse en un nuevo par de planchas para el pelo brillante. Por suerte, hay algunos, sin duda muy buenos comerciantes de reparación sobre la prestación de servicios ya una reparación ghd para pequeñas dólares.<br><br>When you loved this article and you would want to receive more details with regards to [http://tinyurl.com/ntsklkt http://tinyurl.com/ntsklkt] generously visit our own web site.
:<math>\lim_{n\rightarrow\infty}f_n(x)=f(x).</math>
 
for every ''x'' in the domain.
 
==Properties==
This concept is often contrasted with [[uniform convergence]].  To say that
 
:<math>\lim_{n\rightarrow\infty}f_n=f\  \mbox{uniformly}</math>
 
means that
 
:<math>\lim_{n\rightarrow\infty}\,\sup\{\,\left|f_n(x)-f(x)\right|: x\in\mbox{the domain}\,\}=0.</math>
 
That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent. For example we have
 
:<math>\lim_{n\rightarrow\infty} x^n=0\ \mbox{pointwise}\ \mbox{on}\ \mbox{the}\ \mbox{interval}\ [0,1),\ \mbox{but}\ \mbox{not}\ \mbox{uniformly}\ \mbox{on}\ \mbox{the}\ \mbox{interval}\ [0,1).</math><!-- don't change [0,1) to [0,1]. That is a mathematical error.  This sequence does NOT converge to 0 when x = 1. -->
 
The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example,
 
:<math>f(x)=\lim_{n\rightarrow\infty} \cos (\pi x)^{2n}</math>
 
takes the value 1 when ''x'' is an integer and 0 when ''x'' is not an integer, and so is discontinuous at every integer.
 
The values of the functions ''f''<sub>''n''</sub> need not be real numbers, but may be in any [[topological space]], in order that the concept of pointwise convergence make sense.  Uniform convergence, on the other hand, does not make sense for functions taking values in topological spaces generally, but makes sense for functions taking values in [[metric space]]s, and, more generally, in [[uniform space]]s.
 
==Topology==
Pointwise convergence is the same as convergence in the [[product topology]] on the space ''Y''<sup>''X''</sup>.  If ''Y'' is [[compact set|compact]], then, by [[Tychonoff's theorem]], the space ''Y''<sup>''X''</sup> is also compact.
 
==Almost everywhere convergence==
In [[measure theory]], one talks about ''almost everywhere convergence''  of a sequence of [[measurable function]]s defined on a [[measurable space]]. That means pointwise convergence [[almost everywhere]]. [[Egorov's theorem]] states that pointwise convergence almost everywhere on a set of finite measure implies uniform convergence on a slightly smaller set.
 
==See also==
*[[Modes of convergence (annotated index)]]
 
==References==
{{reflist}}
 
{{DEFAULTSORT:Pointwise Convergence}}
[[Category:Topology of function spaces]]
[[Category:Measure theory]]
[[Category:Convergence (mathematics)]]
[[Category:Topological spaces]]
 
[[hu:Függvénysorozatok konvergenciája#Pontonkénti konvergencia]]

Revision as of 10:46, 16 November 2013

In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function.[1][2]

Definition

Suppose { fn } is a sequence of functions sharing the same domain and codomain (for the moment, we defer specifying the nature of the values of these functions, but the reader may take them to be real numbers). The sequence { fn } converges pointwise to f, often written as

limnfn=fpointwise,

if and only if

limnfn(x)=f(x).

for every x in the domain.

Properties

This concept is often contrasted with uniform convergence. To say that

limnfn=funiformly

means that

limnsup{|fn(x)f(x)|:xthe domain}=0.

That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent. For example we have

limnxn=0pointwiseontheinterval[0,1),butnotuniformlyontheinterval[0,1).

The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example,

f(x)=limncos(πx)2n

takes the value 1 when x is an integer and 0 when x is not an integer, and so is discontinuous at every integer.

The values of the functions fn need not be real numbers, but may be in any topological space, in order that the concept of pointwise convergence make sense. Uniform convergence, on the other hand, does not make sense for functions taking values in topological spaces generally, but makes sense for functions taking values in metric spaces, and, more generally, in uniform spaces.

Topology

Pointwise convergence is the same as convergence in the product topology on the space YX. If Y is compact, then, by Tychonoff's theorem, the space YX is also compact.

Almost everywhere convergence

In measure theory, one talks about almost everywhere convergence of a sequence of measurable functions defined on a measurable space. That means pointwise convergence almost everywhere. Egorov's theorem states that pointwise convergence almost everywhere on a set of finite measure implies uniform convergence on a slightly smaller set.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

hu:Függvénysorozatok konvergenciája#Pontonkénti konvergencia

  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  2. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534