Cohen ring: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Katharineamy
added Category:Algebra; removed {{uncategorized}} using HotCat
 
en>Giftlite
m −sp
Line 1: Line 1:
Sales however have dropped in the past couple of quarters.<br>And she may be into her career, but what she's really saying is  or possibly  but which one is it?  If you have any kind of concerns concerning where and ways to use [http://www.restaurantcalcuta.com/outlet/ugg.asp Cheap Uggs For Sale], you could call us at our internet site. 60% of all human communication is non verbal, so that means 90% of what you're saying ain't coming out of your mouth. Of course she's going to lie to you! She doesn't want to hurt your feelings! What else she going to say? She doesn't even know you.<br>http://www.bendtrapclub.com/cheap/ugg.asp?p=453 <br />  http://www.bendtrapclub.com/cheap/ugg.asp?p=317 <br /> http://www.bendtrapclub.com/cheap/ugg.asp?p=312 <br /> http://www.bendtrapclub.com/cheap/ugg.asp?p=457 <br /> http://www.bendtrapclub.com/cheap/ugg.asp?p=81 <br /> <br>http://atlantaka.org/?document_srl=925954<br>http://wikiweedia.org/index.php?title=Unbiased_Report_Exposes_The_Unanswered_Questions_on_Bags_Outlet
In [[mathematical analysis]], the '''Hardy–Littlewood inequality''', named after [[G. H. Hardy]] and [[John Edensor Littlewood]], states that if ''f'' and ''g'' are nonnegative [[measurable function|measurable]] [[real functions]] vanishing at [[infinity]] that are defined on ''n''-[[dimension]]al [[Euclidean space]] '''R'''<sup>''n''</sup> then
 
:<math>\int_{\mathbb{R}^n} f(x)g(x) \, dx \leq \int_{\mathbb{R}^n} f^*(x)g^*(x) \, dx</math>
 
where ''f''<sup>*</sup> and ''g''<sup>*</sup> are the [[symmetric decreasing rearrangement]]s of ''f''(''x'') and ''g''(''x''), respectively.<ref name=liebloss>{{cite book | author=Lieb, Elliott H., &amp; Loss, Michael | title=Analysis | edition=Second | publisher=American Mathematical Society | location=Providence, RI | year=2001 | isbn=0-8218-2783-9 }}
</ref><ref name=burchard>{{cite book|title=A Short Course on Rearrangement Inequalities|first=Almut|last=Burchard|url=http://www.math.toronto.edu/almut/rearrange.pdf}}</ref>
 
==Proof==
From [[layer cake representation]] we have:<ref name=liebloss/><ref name=burchard/>
:<math>f(x)= \int_0^\infty \chi_{f(x)>r} \, dr</math>
:<math>g(x)= \int_0^\infty \chi_{g(x)>s} \, ds</math>
 
where <math>\chi_{f(x)>r}</math> denotes the [[indicator function]] of the subset ''E''<sub> ''f''</sub> given by
 
:<math>E_f=\left\{x\in X: f(x)>r\right\} \, </math>
 
Analogously, <math>\chi_{g(x)>s}</math> denotes the indicator function of the subset ''E''<sub> ''g''</sub> given by
 
:<math>E_g=\left\{x\in X: g(x)>s\right\} \, </math>
 
:<math>\begin{align}
\int_{\mathbb{R}^n} f(x)g(x) \, dx &= \displaystyle\int_{\mathbb{R}^n}\int_0^\infty \int_0^\infty \chi_{f(x)>r}\chi_{g(x)>s} \, dr \, ds \, dx \\[8pt]
&= \int_0^\infty \int_0^\infty \int_{\mathbb{R}^n}\chi_{f(x)>r\cap g(x)>s} \, dx \, dr \, ds \\[8pt]
&= \int_0^\infty \int_0^\infty \mu\left(\left\{f(x)>r\right\}\cap\left\{ g(x)>s\right\}\right) \, dr \, ds\\[8pt]
&\leq \int_0^\infty \int_0^\infty \min\left(\mu\left(f(x)>r\right);\mu\left(g(x)>s\right)\right) \, dr \, ds\\[8pt]
&= \int_0^\infty \int_0^\infty \min\left(\mu\left(f^*(x)>r\right);\mu\left(g^*(x)>s\right)\right) \, dr \, ds\\[8pt]
&= \int_0^\infty \int_0^\infty \mu\left(\left\{f^\ast(x)>r\right\}\cap\left\{ g^\ast(x)>s\right\}\right) \, dr \, ds\\[8pt]
&= \int_{\mathbb{R}^n} f^*(x)g^*(x) \, dx
\end{align}
</math>
 
==See also==
* [[Rearrangement inequality]]
* [[Chebyshev's sum inequality]]
 
==References==
<references/>
 
{{DEFAULTSORT:Hardy-Littlewood inequality}}
[[Category:Inequalities]]
[[Category:Articles containing proofs]]

Revision as of 19:14, 18 December 2012

In mathematical analysis, the Hardy–Littlewood inequality, named after G. H. Hardy and John Edensor Littlewood, states that if f and g are nonnegative measurable real functions vanishing at infinity that are defined on n-dimensional Euclidean space Rn then

nf(x)g(x)dxnf*(x)g*(x)dx

where f* and g* are the symmetric decreasing rearrangements of f(x) and g(x), respectively.[1][2]

Proof

From layer cake representation we have:[1][2]

f(x)=0χf(x)>rdr
g(x)=0χg(x)>sds

where χf(x)>r denotes the indicator function of the subset E f given by

Ef={xX:f(x)>r}

Analogously, χg(x)>s denotes the indicator function of the subset E g given by

Eg={xX:g(x)>s}
nf(x)g(x)dx=n00χf(x)>rχg(x)>sdrdsdx=00nχf(x)>rg(x)>sdxdrds=00μ({f(x)>r}{g(x)>s})drds00min(μ(f(x)>r);μ(g(x)>s))drds=00min(μ(f*(x)>r);μ(g*(x)>s))drds=00μ({f(x)>r}{g(x)>s})drds=nf*(x)g*(x)dx

See also

References

  1. 1.0 1.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  2. 2.0 2.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534