Cohen ring: Difference between revisions
Jump to navigation
Jump to search
en>Katharineamy added Category:Algebra; removed {{uncategorized}} using HotCat |
en>Giftlite m −sp |
||
Line 1: | Line 1: | ||
In [[mathematical analysis]], the '''Hardy–Littlewood inequality''', named after [[G. H. Hardy]] and [[John Edensor Littlewood]], states that if ''f'' and ''g'' are nonnegative [[measurable function|measurable]] [[real functions]] vanishing at [[infinity]] that are defined on ''n''-[[dimension]]al [[Euclidean space]] '''R'''<sup>''n''</sup> then | |||
:<math>\int_{\mathbb{R}^n} f(x)g(x) \, dx \leq \int_{\mathbb{R}^n} f^*(x)g^*(x) \, dx</math> | |||
where ''f''<sup>*</sup> and ''g''<sup>*</sup> are the [[symmetric decreasing rearrangement]]s of ''f''(''x'') and ''g''(''x''), respectively.<ref name=liebloss>{{cite book | author=Lieb, Elliott H., & Loss, Michael | title=Analysis | edition=Second | publisher=American Mathematical Society | location=Providence, RI | year=2001 | isbn=0-8218-2783-9 }} | |||
</ref><ref name=burchard>{{cite book|title=A Short Course on Rearrangement Inequalities|first=Almut|last=Burchard|url=http://www.math.toronto.edu/almut/rearrange.pdf}}</ref> | |||
==Proof== | |||
From [[layer cake representation]] we have:<ref name=liebloss/><ref name=burchard/> | |||
:<math>f(x)= \int_0^\infty \chi_{f(x)>r} \, dr</math> | |||
:<math>g(x)= \int_0^\infty \chi_{g(x)>s} \, ds</math> | |||
where <math>\chi_{f(x)>r}</math> denotes the [[indicator function]] of the subset ''E''<sub> ''f''</sub> given by | |||
:<math>E_f=\left\{x\in X: f(x)>r\right\} \, </math> | |||
Analogously, <math>\chi_{g(x)>s}</math> denotes the indicator function of the subset ''E''<sub> ''g''</sub> given by | |||
:<math>E_g=\left\{x\in X: g(x)>s\right\} \, </math> | |||
:<math>\begin{align} | |||
\int_{\mathbb{R}^n} f(x)g(x) \, dx &= \displaystyle\int_{\mathbb{R}^n}\int_0^\infty \int_0^\infty \chi_{f(x)>r}\chi_{g(x)>s} \, dr \, ds \, dx \\[8pt] | |||
&= \int_0^\infty \int_0^\infty \int_{\mathbb{R}^n}\chi_{f(x)>r\cap g(x)>s} \, dx \, dr \, ds \\[8pt] | |||
&= \int_0^\infty \int_0^\infty \mu\left(\left\{f(x)>r\right\}\cap\left\{ g(x)>s\right\}\right) \, dr \, ds\\[8pt] | |||
&\leq \int_0^\infty \int_0^\infty \min\left(\mu\left(f(x)>r\right);\mu\left(g(x)>s\right)\right) \, dr \, ds\\[8pt] | |||
&= \int_0^\infty \int_0^\infty \min\left(\mu\left(f^*(x)>r\right);\mu\left(g^*(x)>s\right)\right) \, dr \, ds\\[8pt] | |||
&= \int_0^\infty \int_0^\infty \mu\left(\left\{f^\ast(x)>r\right\}\cap\left\{ g^\ast(x)>s\right\}\right) \, dr \, ds\\[8pt] | |||
&= \int_{\mathbb{R}^n} f^*(x)g^*(x) \, dx | |||
\end{align} | |||
</math> | |||
==See also== | |||
* [[Rearrangement inequality]] | |||
* [[Chebyshev's sum inequality]] | |||
==References== | |||
<references/> | |||
{{DEFAULTSORT:Hardy-Littlewood inequality}} | |||
[[Category:Inequalities]] | |||
[[Category:Articles containing proofs]] |
Revision as of 19:14, 18 December 2012
In mathematical analysis, the Hardy–Littlewood inequality, named after G. H. Hardy and John Edensor Littlewood, states that if f and g are nonnegative measurable real functions vanishing at infinity that are defined on n-dimensional Euclidean space Rn then
where f* and g* are the symmetric decreasing rearrangements of f(x) and g(x), respectively.[1][2]
Proof
From layer cake representation we have:[1][2]
where denotes the indicator function of the subset E f given by
Analogously, denotes the indicator function of the subset E g given by
See also
References
- ↑ 1.0 1.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 - ↑ 2.0 2.1 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.
My blog: http://www.primaboinca.com/view_profile.php?userid=5889534