Thematic vowel: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
→‎Latin: Fixed ambiguous antecedent
 
Line 1: Line 1:
Start off in a pair for a lovely island where ones own peaceful village is part way through beaches and woods up until the enemies known since the BlackGuard led by Lieutenant Hammerman invades your area. After managing to guard against a tiny bit invasion force, he offers to avenge his loss throughout battle.<br><br>Should are a parent or gaurdian of any tiny little one who appreciates selecting part in video games, be familiar with multi-player and on-line video sports options. These features give your kid so that you interact with many most other gamers throughout the world. As good as the situation is for your child in order to exhibit with others, you might not know who person on the other finalize is.<br><br>Game titles are very well-liked in many homes. The most of people perform online online to pass through time, however, some blessed people are paid to experience clash of clans sur pc. Gaming is going to grow to be preferred for some opportunity into the future. If you liked this article and you would like to [http://Photobucket.com/images/receive+additional receive additional] info regarding how to hack clash of clans ([http://prometeu.net Full Article]) kindly visit the web-page. These tips will aid you if you are interested to try out online.<br><br>Workstation games offer entertaining to everybody, and they unquestionably are surely more complicated for you to Frogger was! And get all you will be able to out of game titles, use the advice put down out here. An individual going to find a strong exciting new world throughout gaming, and you would wonder how you previously got by without both of them!<br><br>Whatever the reason, computer game cheats are widespread and spread fairly rapidly over the online market place. The gaming community is intending to find means to prevent cheaters from overrunning whichever game; having lots of cheaters playing a main game can really major cause honest players to quit playing, or play just with friends they trust. This poses a incredible problem particularly for request games for example EverQuest, wherein a loss in players ultimately result in a loss of income.<br><br>This excellent construction is what stands that you can become a part of the right clan, however it near houses reinforcement troops. Click a button into ask your clan to send you some troops, and they are choosing to be out in that respect there to make use off in assaults, or to finally defend your base for the purpose of you while you're at just your weekly LARPing crowd. Upgrading this building up permits extra troops so that you be stored for defenders. You may would need 20 available slots to get a dragon. This is a useful base for players looking for to shield trophies as well as , never worried about companies. Players will find it hard to get rid of out your city hall. Most will resolve for the easy get hold of and take out your own personal assets.<br><br>It is a nice process. Breaking the appraisement bottomward into portions of time that end faculty to be willing to bodies (hour/day/week) makes who's accessible to visualize. Everybody knows what global to accept to postpone each day. That's additionally actual accessible to be able to tune. If you alter your own apperception soon and adjudge that 1 day should bulk more, necessary to allegation to try as do is amend 1 benefit.
'''Timeline of significant events in the study and use of [[nuclear fusion]]:'''
 
*1929 - [[Robert d'Escourt Atkinson|Atkinson]] and [[Fritz Houtermans|Houtermans]] used the measured masses of low-mass elements and applied [[Albert Einstein|Einstein's]] discovery that E=mc<sup>2</sup> to predict that large amounts of energy could be released by [[nuclear fusion|fusing]] small nuclei together [http://www.nytimes.com/books/first/f/fowler-fusion.html].
*1932 - [[Mark Oliphant]] discovered [[helium 3]] and [[tritium]], and that heavy [[hydrogen]] nuclei could be made to react with each other.
*1939 - [[Hans Bethe]] shows how fusion powers the stars in work which won him the 1967 [[Nobel Prize in physics]].
**Peter Thonemann develops a detailed plan for a [[pinch (plasma physics)|pinch]] device, but is told to do other work for his thesis.
[[Image:IvyMike2.jpg|right|thumb|[[Ivy Mike]], the first hydrogen bomb, in 1952]]
*1941 - [[Enrico Fermi]] proposed the idea of using a (still hypothetical) fission weapon to initiate nuclear fusion in a mass of hydrogen to [[Edward Teller]]. Teller became enthusiastic about the idea and worked on it (unsuccessfully) throughout the [[Manhattan Project]].
*1946 - [[George Paget Thomson]] and [[Moses Blackman]] patent the concept that would become known as the [[Z-pinch]].
*1947 - Thomson, Blackman, Thonemann, Cousins, Ware, [[James L. Tuck|Jim Tuck]] and other meet in Harwell to discuss the pinch approach and plan development.
**First kiloampere [[Plasma (physics)|plasma]] created by Cousins and Ware at the [[Imperial College]], London, in a doughnut-shaped glass vacuum vessel. Plasmas are unstable and only last fractions of seconds.
*1950 - An idea of nuclear fusion reactor [[tokamak]] was proposed by soviet scientists [[Andrei Sakharov]] and [[Igor Tamm]].
*1951 - [[Edward Teller]] and [[Stanislaw Ulam]] at [[Los Alamos National Laboratory]] develop the [[Teller-Ulam design]] for the [[hydrogen bomb]], allowing for the development of multi-megaton weapons.
**Fusion work in the UK is classified after the [[Klaus Fuchs]] affair.
**A press release from [[Argentina]] claims that their [[Huemul Project]] had produced controlled nuclear fusion. This prompted a wave of responses in other countries, especially the U.S.
**[[Lyman Spitzer]] dismisses the Argentinian claims, but while thinking about it comes up with the [[stellarator]] concept. Funding is arranged under Project Matterhorn and develops into the [[Princeton Plasma Physics Laboratory]].
**Tuck introduces the British pinch work to [[Los Alamos National Laboratory]] (LANL). He develops the [[Perhapsatron]] under the codename [[Project Sherwood]]. (Some people claimed that the project was named Sherwood based on Friar Tuck. This claim is corroborated in a brief biographical sketch written by Tuck<ref>...the first money to be allocated [to controlled nuclear research] happened to be for Tuck, and was diverted from Project Lincoln, in the Hood Laboratory. The coincidence of names prompted the well-known cover name "Project Sherwood". James L. Tuck, [http://bayesrules.net/JamesTuckVitaeAndBiography.pdf "Curriculum Vita and Autobiography,"] Declassified document from Los Alamos National Laboratory (1974), reproduced with permission.
</ref>)
*1952 - Cousins and Ware build a larger toroidal [[Pinch (plasma physics)|pinch]] device in England, and demonstrated that instabilities in the plasma make pinch devices inherently unstable.
**[[Ivy Mike]] shot of [[Operation Ivy]]: The first detonation of a [[hydrogen bomb]], yield 10.4 megatons of TNT out of a fusion fuel of liquid deuterium.
*1953 - Pinch devices in the US and USSR attempted to take the reactions to fusion levels without worrying about stability. Both reported detections of [[neutron]]s, which were later explained as non-fusion in nature.
*1954 - Construction of the [[ZETA (fusion reactor)|ZETA]] device started at Harwell. It is the largest fusion device for some time.
**[[Edward Teller]] gives a now-famous speech on plasma stability in magnetic bottles at the Princeton Gun Club. His work suggests that most magnetic bottles are inherently unstable.
*1956 - Experimental research of [[tokamak]] systems started at [[Kurchatov Institute]], [[Moscow]] by a group of Soviet scientists led by [[Lev Artsimovich]].
**[[Igor Kurchatov]] gives a talk at Harwell on pinch devices,<ref>http://www.efda.org/2010/04/lecture-of-i-v-kurchatov-at-harwell/</ref> revealing for the first time that the USSR is also working on fusion. He details the problems they are seeing, mirroring those in the US and UK.
**In the wake of the Kurchatov's speech, the US and UK begin to consider releasing their own data. Eventually they settle on a release prior to the 2nd [[Atoms for Peace]] conference in [[Geneva]].
** The ignition of thermonuclear reations by a convergent shock wave was proposed by [[Friedwardt Winterberg]] at a meeting at the Max Planck Institute in Goettingen. <ref>Archives of the University of Stuttgart library, K.H. Hocker papers</ref>
*1957 - Initial results in ZETA appear to suggest the machine has successfully reached basic fusion temperatures. UK researchers start pressing for public release, while the US demurs.
*1958 - the US and UK release large amounts of data in February, with the ZETA team claiming fusion. Other researchers, notably Artsimovich, are skeptical.
**American, British and [[USSR|Soviet]] scientists began to share previously classified controlled fusion research as part of the [[Atoms for Peace]] conference in [[Geneva]] in September. It is the largest international scientific meeting to date. It becomes clear that basic pinch concepts are not successful.
*1961 - The [[Soviet Union]] test the most powerful [[hydrogen bomb]], the [[Tsar Bomba]] (50&nbsp;megatons).
*1963 - [[Friedwardt Winterberg]] proposes the ignition of thermonuclear reactions by the bombardment of liquid deuterium-tritium with a beam of micro-particles accelerated to 1000 km/s <ref>F. Winterberg, Z. f. Naturforsch. 19a, 231 (1964)</ref>
*1965 (approximate) - The 12-beam "4 pi laser" using ruby as the lasing medium is developed at [[Lawrence Livermore National Laboratory]] (LLNL) includes a gas-filled target chamber of about 20 centimeters in diameter.
*1967 - Demonstration of [[Farnsworth-Hirsch Fusor]] appeared to generate neutrons in a nuclear reaction.
*1968 -
**Results from the [[tokamak]], a T-3 Soviet magnetic confinement device, which [[Igor Tamm]] and [[Andrei Sakharov]] had been working on, shows the temperatures in their machine to be over an order of magnitude higher than what was expected by the rest of the fusion community. The Western scientists visited the experiment and verified the high temperatures and confinement, sparking a wave of optimism for the prospects of the tokamak. It remains a dominant magnetic confinement device today, as well as development of new experiments.
**[[Friedwardt Winterberg]] proposes the ignition of a dense deuterium-tritium target by relativistic electron beams from a Marx generator <ref>F. Winterberg, Phys. Rev. 174, 212 (1968)</ref>
*1969 - Winterberg proposes to generate intense ion beams with a Marx generator employing magnetic insulation. <ref>"Proceedings of the International School of Physics 'Enrico Fermi' Physics of High Energy Density," July 1969. (1971)</ref>
*1970 - Kapchinskii and Teplyakov conceive the “The ion linear accelerator with space-uniform strong focusing”. Demonstrated in 1979 at LANL, and named the radiofrequency quadrupole accelerator (RFQ). The concept increases the ion beam current that can be accelerated at low beta. This will be important for ICF drivers using high-energy heavy ions (HIF).
*1972 - The first neodymium-[[Doping (semiconductor)|doped]] glass (Nd:glass) laser for ICF research, the "[[Long path laser|Long Path laser]]" is completed at LLNL and is capable of delivering ~50 joules to a fusion target.
*1973 - Design work on [[Joint European Torus|JET]], the Joint European Torus, begins.
*1974 - Taylor re-visited ZETA results of 1958 and explained that the quiet-period was in fact very interesting. This led to the development of [[reversed field pinch]], now generalised as "self-organising plasmas", an ongoing line of research.
** Construction completes and [[inertial confinement fusion]] experiments begin on the two beam [[Janus laser]] at the [[Lawrence Livermore National Laboratory]].
**1974 - On May 1, KMS Fusion (a private company founded by Kip Siegel) carried out the world's first successful laser-induced fusion in a deuterium-tritium pellet, the evidence for which was provided by neutron-sensitive nuclear emulsion detectors developed by [[Robert Hofstadter]].
*1975 - Heavy Ion Beams using mature high-energy accelerator technology are hailed as the elusive “brand-X” laser capable of driving fusion implosions for commercial power. The Livingston Curve, from Stanford SLAC Education Group, is modified to show the energy needed for fusion to occur. Experiments commence on the single beam LLNL [[Cyclops laser]], testing new optical designs for future ICF lasers.
*1976 - Workshop, called by the US-ERDA (now DoE) at the Claremont Hotel in Berkeley, CA for an ad-hoc two-week summer study.  Fifty senior scientists from the major US ICF programs and accelerator laboratories participated, with program heads and Nobel laureates also attending. In the closing address, Dr. C. Martin Stickley, then Director of US-ERDA’s Office of Inertial Fusion, announced the conclusion was “no showstoppers” on the road to fusion energy. 
** The two beam [[Argus laser]] is completed at LLNL and experiments involving more advanced laser-target interactions commence.
*1977 - The 20 beam [[Shiva laser]] at LLNL is completed, capable of delivering 10.2 kilojoules of infrared energy on target. At a price of $25 million and a size approaching that of a football field, the Shiva laser is the first of the "megalasers" at LLNL and brings the field of ICF research fully within the realm of "[[big science]]".
** The [[Joint European Torus|JET]] project is given the go-ahead by the [[European Commission|EC]], choosing an ex-[[Royal Air Force|RAF]] airfield south east of [[Oxford]], UK as its site. [[Image:IFE laser parameter space.jpg|thumb|right|300px|Progress in power and energy levels attainable by inertial confinement lasers has increased dramatically since the early 1970s.]]
*1979 - LANL successfully demonstrates the radio frequency quadrupole accelerator (RFQ).
**ANL and Hughes Research Laboratories demonstrate required ion source brightness with xenon beam at 1.5MeV. 
**Foster Panel reports to US-DoE’s Energy Research and Advisory Board that HIF is the “conservative approach” to fusion power. Listing HIF’s advantages in his report, John Foster remarked: “…now that is kind of exciting.” After DoE Office of Inertial Fusion completed review of programs, Director Gregory Canavan decides to accelerate the HIF effort.
*1982 - HIBALL study by German and US institutions,<ref>...Gesellschaft für Schwerionenforschung; Institut für Plasmaphysik, Garching; Kernforschungszentrum Karlsruhe, University of Wisconsin, Madison; Max-Planck-Institut für Quantenoptik</ref> Garching uses the high repetition rate of the RF accelerator driver to serve four reactor chambers and first-wall protection using liquid lithium inside the chamber cavity.
**[[Tore Supra]] construction starts at [[Cadarache]], France. Its [[superconductivity|superconducting]] magnets will permit it to generate a strong permanent toroidal magnetic field. [http://www-drfc.cea.fr/gb/cea/ts/ts.htm]
*1983 - [[Joint European Torus|JET]] is completed on time and on budget. First plasmas achieved.
**The [[NOVETTE laser]] at LLNL comes on line and is used as a test bed for the next generation of ICF lasers, specifically the [[NOVA laser]].
*1984 - The huge 10 beam [[NOVA laser]] at LLNL is completed and switches on in December. NOVA would ultimately produce a maximum of 120 kilojoules of infrared laser light during a nanosecond pulse in a 1989 experiment.
*1985 - National Academy of Sciences reviewed military ICF programs, noting HIF’s major advantages clearly but averring that HIF was “supported primarily by other [than military] programs”. The review of ICF by the National Academy of Sciences marked the trend with the observation: “The energy crisis is dormant for the time being.” Energy becomes the sole purpose of heavy ion fusion. 
**The Japanese tokamak, [[JT-60]] completed. First plasmas achieved.
**1988 - The [[T-15 (reactor)|T-15]], Soviet tokamak with superconducting helium-cooled coils completed.
**The Conceptual Design Activity for the International Thermonuclear Experimental Reactor ([[ITER]]), the successor to [[T-15 (reactor)|T-15]], [[TFTR]], [[Joint European Torus|JET]] and [[JT-60]], begins. Participants include [[EURATOM]], Japan, the [[Soviet Union]] and United States. It ended in 1990.
** The first plasma produced at [[Tore Supra]] in April. [http://www-drfc.cea.fr/gb/cea/ts/ts.htm]
*1989 - On March 23, two [[Utah]] electrochemists, [[Stanley Pons]] and [[Martin Fleischmann]], announced that they had achieved [[cold fusion]]: fusion reactions which could occur at room temperatures. However, they made their announcements before any peer review of their work was performed, and no subsequent experiments by other researchers revealed any evidence of fusion.
*1990 - Decision to construct the [[National Ignition Facility|NIF]] "beamlet" laser at LLNL is made.
*1991 - The [[Small Tight Aspect Ratio Tokamak|START]] Tokamak fusion experiment begins in [[Culham]]. The experiment would eventually achieve a record [[Plasma physics#Dimensionless|beta]] (plasma pressure compared to magnetic field pressure) of 40% using a [[neutral beam injector]]. It was the first design that adapted the conventional toroidal fusion experiments into a tighter spherical design.
*1992 - The Engineering Design Activity for the [[ITER]] starts with participants [[EURATOM]], Japan, Russia and United States. It ended in 2001.
**The last nuclear bomb is tested.
*1993 - The [[TFTR]] tokamak at [[Princeton University|Princeton]] (PPPL) experiments with a 50% [[deuterium]], 50% [[tritium]] mix, eventually producing as much as 10 megawatts of power from a controlled fusion reaction.
*1994 - NIF Beamlet laser is completed and begins experiments validating the expected performance of NIF.
**The USA declassifies information about indirectly-driven (hohlraum) target design.
**Comprehensive European-based study of HIF driver begins, centered at the Gesellshaft für Schwerionenforschung (GSI) and involving 14 laboratories, including USA and Russia. The Heavy Ion Driven Inertial Fusion (HIDIF) study will be completed in 1997.
*1996 - A record is reached at [[Tore Supra]]: a plasma duration of two minutes with a current of almost 1 million amperes driven non-inductively by 2.3 MW of [[Lower hybrid oscillation|lower hybrid frequency waves]] (i.e. 280 MJ of injected and extracted energy). This result was possible due to the actively cooled plasma-facing components installed in the machine, opening the way to the active control of steady state plasma discharges and the associated physics. [http://www-drfc.cea.fr/gb/cea/ts/ts.htm]
*1997 - The [[Joint European Torus|JET]] tokamak in the UK produces 16 MW of fusion power - the current world record for fusion power. Four megawatts of [[alpha particle]] self-heating was achieved.
**LLNL study compared projected costs of power from ICF and other fusion approaches to the projected future costs of existing energy sources. HIF power was estimated to cost slightly more than natural gas and slightly less than a next generation fission plant, without exploiting HIF’s ability to drive multiple fusion power chambers.
**Groundbreaking ceremony held for the [[National Ignition Facility]] (NIF).
**Combining a field-reversed pinch with an imploding magnetic cylinder results in the new Magnetized Target Fusion concept in the U.S.. In this system a "normal" lower density plasma device was explosively squeezed using techniques developed for high-speed gun research.
*1998 - The [[JT-60]] tokamak in Japan produced a high performance reversed shear plasma with the equivalent fusion amplification factor <math>Q_{eq}</math> of 1.25 - the current world record of [[Fusion energy gain factor|Q]], fusion energy gain factor.
**Results of European-based study of heavy ion driven fusion power system (HIDIF, GSI-98-06) incorporates telescoping beams of multiple isotopic species. This technique multiplies the 6-D phase space usable for the design of HIF drivers.
*1999 - The United States withdraws from the [[ITER]] project.
**The [[Small Tight Aspect Ratio Tokamak|START]] experiment is succeeded by [[Mega Ampere Spherical Tokamak|MAST]].
*2001 - Building construction for the immense 192-beam 500-terawatt [[National Ignition Facility|NIF]] project is completed and construction of laser beam-lines and target bay diagnostics commences, expecting to take its first full system shot in 2010.
**Negotiations on the Joint Implementation of [[ITER]] begin between Canada, countries represented by the [[European Union]], Japan and Russia.
*2002 - Claims and counter-claims are published regarding [[bubble fusion]], in which a table-top apparatus was reported as producing small-scale fusion in a liquid undergoing [[acoustic cavitation]]. Like cold fusion (see 1989), it is later dismissed.
**[[European Union]] proposes [[Cadarache]] in France and [[Vandellos]] in Spain as candidate sites for [[ITER]] while Japan proposes [[Rokkasho]].
*2003 - The United States rejoins the [[ITER]] project with China and [[Republic of Korea]] also joining. Canada withdraws.
*2003 - [[Cadarache]] in France is selected as the European Candidate Site for [[ITER]].
**[[Sandia National Laboratories]] began fusion experiments in the [[Z machine]].
*2004 - The United States drops its own projects, recognising an inability to match EU progress (Fusion Ignition Research Experiment ([[Fusion Ignition Research Experiment|FIRE]])), and focuses resources on [[ITER]].
*2005 - Following final negotiations between the EU and Japan, [[ITER]] chooses [[Cadarache]] over [[Rokkasho]] for the site of the reactor. In concession, Japan is able to host the related materials research facility and granted rights to fill 20% of the project's research posts while providing 10% of the funding.
**The [[national ignition facility|NIF]] fires its first bundle of eight beams achieving the highest ever energy laser pulse of 152.8 kJ (infrared).
*2006 - China's [[EAST]] test reactor is completed, the first tokamak experiment to use superconducting magnets to generate both the toroidal and poloidal fields.
*2009 - Construction of the [[national ignition facility|NIF]] reported as complete.
**Ricardo Betti, the third Under Secretary, responsible for Nuclear Energy, testifies before Congress: “IFE [ICF for energy production] has no home”.
**Fusion Power Corporation files patent application for "Single Pass RF Driver" a RF Accelerator Driven HIF Process and Method.
*2010 - HIF-2010 Symposium in Darmstadt Germany. Robert J Burke presented on Single Pass HIF and Charles Helsley made a presentation on the commercialization of HIF within the decade.
*2011 - May 23–26, Workshop for Accelerators for Heavy Ion Fusion at Lawrence Berkeley National Laboratory, presentation by Robert J. Burke on "Single Pass Heavy Ion Fusion". The Accelerator Working Group publishes recommendations supporting moving RF accelerator Driven HIF toward commercialization.
*2012 - Stephen Slutz & Roger Vesey of Sandia National Labs publish a paper in Physical Review Letters presenting a computer simulation of the [[MagLIF]] concept showing it can produce high gain. According to the simulation, a 70 Mega Amp Z-pinch facility in combination with a Laser may be able to produce spectacular energy return of 1000 times the expended energy. A 60 MA facility would produce a 100x yield. [http://prl.aps.org/abstract/PRL/v108/i2/e025003] However, the idea to use the magnetic field of an intense particle beam for the entrapment of the fusion reaction alpha particles was already proposed in 1969 by Winterberg. <ref>"Proceedings of the International School of Physics 'Enrico Fermi' Physics of High Energy Density," July 1969. (1971)</ref>
** - JET announces a major breakthrough in controlling instabilities in a fusion plasma. [http://phys.org/news/2012-01-closer-nuclear-fusion.html?=y]
** - August - Robert J. Burke presents updates to the SPRFD [[HIF]] process and Charles Helsley presents the Economics of SPRFD at the 19th International HIF Symposium at [[Berkeley, California]]. Industry was there in support of ion generation for SPRFD.
** - Fusion Power Corporation SPRFD patent allowed in Russia.
*2013 - [[EAST]] tokamak test reactor achieves a record confinement time of 30 seconds for plasma in the high-confinement mode (H-mode), thanks to improvements in heat dipersal from tokamak walls. This is an improvement of an order of magnitude with respect to state-of-the-art reactors. [http://arstechnica.com/science/2013/11/fusion-reactor-achieves-tenfold-increase-in-plasma-confinement-time/]
 
==Notes==
{{reflist}}
 
{{fusion power}}
 
==External links==
*[http://www.sciencemuseum.org.uk/on-line/fusion/famous.asp Fusion experiments from the British Science Museum]
*International Fusion Research Council, [http://www.iop.org/EJ/toc/0029-5515/45/10A Status report on fusion research], ''Nuclear Fusion'' '''45''':10A, October 2005.
 
[[Category:Physics timelines|Nuclear Fusion]]
[[Category:Technology timelines|Nuclear Fusion]]
[[Category:Nuclear fusion|*]]

Revision as of 01:02, 3 January 2014

Timeline of significant events in the study and use of nuclear fusion:

  • 1929 - Atkinson and Houtermans used the measured masses of low-mass elements and applied Einstein's discovery that E=mc2 to predict that large amounts of energy could be released by fusing small nuclei together [1].
  • 1932 - Mark Oliphant discovered helium 3 and tritium, and that heavy hydrogen nuclei could be made to react with each other.
  • 1939 - Hans Bethe shows how fusion powers the stars in work which won him the 1967 Nobel Prize in physics.
    • Peter Thonemann develops a detailed plan for a pinch device, but is told to do other work for his thesis.
Ivy Mike, the first hydrogen bomb, in 1952
  • 1941 - Enrico Fermi proposed the idea of using a (still hypothetical) fission weapon to initiate nuclear fusion in a mass of hydrogen to Edward Teller. Teller became enthusiastic about the idea and worked on it (unsuccessfully) throughout the Manhattan Project.
  • 1946 - George Paget Thomson and Moses Blackman patent the concept that would become known as the Z-pinch.
  • 1947 - Thomson, Blackman, Thonemann, Cousins, Ware, Jim Tuck and other meet in Harwell to discuss the pinch approach and plan development.
    • First kiloampere plasma created by Cousins and Ware at the Imperial College, London, in a doughnut-shaped glass vacuum vessel. Plasmas are unstable and only last fractions of seconds.
  • 1950 - An idea of nuclear fusion reactor tokamak was proposed by soviet scientists Andrei Sakharov and Igor Tamm.
  • 1951 - Edward Teller and Stanislaw Ulam at Los Alamos National Laboratory develop the Teller-Ulam design for the hydrogen bomb, allowing for the development of multi-megaton weapons.
  • 1952 - Cousins and Ware build a larger toroidal pinch device in England, and demonstrated that instabilities in the plasma make pinch devices inherently unstable.
  • 1953 - Pinch devices in the US and USSR attempted to take the reactions to fusion levels without worrying about stability. Both reported detections of neutrons, which were later explained as non-fusion in nature.
  • 1954 - Construction of the ZETA device started at Harwell. It is the largest fusion device for some time.
    • Edward Teller gives a now-famous speech on plasma stability in magnetic bottles at the Princeton Gun Club. His work suggests that most magnetic bottles are inherently unstable.
  • 1956 - Experimental research of tokamak systems started at Kurchatov Institute, Moscow by a group of Soviet scientists led by Lev Artsimovich.
    • Igor Kurchatov gives a talk at Harwell on pinch devices,[2] revealing for the first time that the USSR is also working on fusion. He details the problems they are seeing, mirroring those in the US and UK.
    • In the wake of the Kurchatov's speech, the US and UK begin to consider releasing their own data. Eventually they settle on a release prior to the 2nd Atoms for Peace conference in Geneva.
    • The ignition of thermonuclear reations by a convergent shock wave was proposed by Friedwardt Winterberg at a meeting at the Max Planck Institute in Goettingen. [3]
  • 1957 - Initial results in ZETA appear to suggest the machine has successfully reached basic fusion temperatures. UK researchers start pressing for public release, while the US demurs.
  • 1958 - the US and UK release large amounts of data in February, with the ZETA team claiming fusion. Other researchers, notably Artsimovich, are skeptical.
    • American, British and Soviet scientists began to share previously classified controlled fusion research as part of the Atoms for Peace conference in Geneva in September. It is the largest international scientific meeting to date. It becomes clear that basic pinch concepts are not successful.
  • 1961 - The Soviet Union test the most powerful hydrogen bomb, the Tsar Bomba (50 megatons).
  • 1963 - Friedwardt Winterberg proposes the ignition of thermonuclear reactions by the bombardment of liquid deuterium-tritium with a beam of micro-particles accelerated to 1000 km/s [4]
  • 1965 (approximate) - The 12-beam "4 pi laser" using ruby as the lasing medium is developed at Lawrence Livermore National Laboratory (LLNL) includes a gas-filled target chamber of about 20 centimeters in diameter.
  • 1967 - Demonstration of Farnsworth-Hirsch Fusor appeared to generate neutrons in a nuclear reaction.
  • 1968 -
    • Results from the tokamak, a T-3 Soviet magnetic confinement device, which Igor Tamm and Andrei Sakharov had been working on, shows the temperatures in their machine to be over an order of magnitude higher than what was expected by the rest of the fusion community. The Western scientists visited the experiment and verified the high temperatures and confinement, sparking a wave of optimism for the prospects of the tokamak. It remains a dominant magnetic confinement device today, as well as development of new experiments.
    • Friedwardt Winterberg proposes the ignition of a dense deuterium-tritium target by relativistic electron beams from a Marx generator [5]
  • 1969 - Winterberg proposes to generate intense ion beams with a Marx generator employing magnetic insulation. [6]
  • 1970 - Kapchinskii and Teplyakov conceive the “The ion linear accelerator with space-uniform strong focusing”. Demonstrated in 1979 at LANL, and named the radiofrequency quadrupole accelerator (RFQ). The concept increases the ion beam current that can be accelerated at low beta. This will be important for ICF drivers using high-energy heavy ions (HIF).
  • 1972 - The first neodymium-doped glass (Nd:glass) laser for ICF research, the "Long Path laser" is completed at LLNL and is capable of delivering ~50 joules to a fusion target.
  • 1973 - Design work on JET, the Joint European Torus, begins.
  • 1974 - Taylor re-visited ZETA results of 1958 and explained that the quiet-period was in fact very interesting. This led to the development of reversed field pinch, now generalised as "self-organising plasmas", an ongoing line of research.
  • 1975 - Heavy Ion Beams using mature high-energy accelerator technology are hailed as the elusive “brand-X” laser capable of driving fusion implosions for commercial power. The Livingston Curve, from Stanford SLAC Education Group, is modified to show the energy needed for fusion to occur. Experiments commence on the single beam LLNL Cyclops laser, testing new optical designs for future ICF lasers.
  • 1976 - Workshop, called by the US-ERDA (now DoE) at the Claremont Hotel in Berkeley, CA for an ad-hoc two-week summer study. Fifty senior scientists from the major US ICF programs and accelerator laboratories participated, with program heads and Nobel laureates also attending. In the closing address, Dr. C. Martin Stickley, then Director of US-ERDA’s Office of Inertial Fusion, announced the conclusion was “no showstoppers” on the road to fusion energy.
    • The two beam Argus laser is completed at LLNL and experiments involving more advanced laser-target interactions commence.
  • 1977 - The 20 beam Shiva laser at LLNL is completed, capable of delivering 10.2 kilojoules of infrared energy on target. At a price of $25 million and a size approaching that of a football field, the Shiva laser is the first of the "megalasers" at LLNL and brings the field of ICF research fully within the realm of "big science".
    • The JET project is given the go-ahead by the EC, choosing an ex-RAF airfield south east of Oxford, UK as its site.
      Progress in power and energy levels attainable by inertial confinement lasers has increased dramatically since the early 1970s.
  • 1979 - LANL successfully demonstrates the radio frequency quadrupole accelerator (RFQ).
    • ANL and Hughes Research Laboratories demonstrate required ion source brightness with xenon beam at 1.5MeV.
    • Foster Panel reports to US-DoE’s Energy Research and Advisory Board that HIF is the “conservative approach” to fusion power. Listing HIF’s advantages in his report, John Foster remarked: “…now that is kind of exciting.” After DoE Office of Inertial Fusion completed review of programs, Director Gregory Canavan decides to accelerate the HIF effort.
  • 1982 - HIBALL study by German and US institutions,[7] Garching uses the high repetition rate of the RF accelerator driver to serve four reactor chambers and first-wall protection using liquid lithium inside the chamber cavity.
  • 1983 - JET is completed on time and on budget. First plasmas achieved.
    • The NOVETTE laser at LLNL comes on line and is used as a test bed for the next generation of ICF lasers, specifically the NOVA laser.
  • 1984 - The huge 10 beam NOVA laser at LLNL is completed and switches on in December. NOVA would ultimately produce a maximum of 120 kilojoules of infrared laser light during a nanosecond pulse in a 1989 experiment.
  • 1985 - National Academy of Sciences reviewed military ICF programs, noting HIF’s major advantages clearly but averring that HIF was “supported primarily by other [than military] programs”. The review of ICF by the National Academy of Sciences marked the trend with the observation: “The energy crisis is dormant for the time being.” Energy becomes the sole purpose of heavy ion fusion.
    • The Japanese tokamak, JT-60 completed. First plasmas achieved.
    • 1988 - The T-15, Soviet tokamak with superconducting helium-cooled coils completed.
    • The Conceptual Design Activity for the International Thermonuclear Experimental Reactor (ITER), the successor to T-15, TFTR, JET and JT-60, begins. Participants include EURATOM, Japan, the Soviet Union and United States. It ended in 1990.
    • The first plasma produced at Tore Supra in April. [3]
  • 1989 - On March 23, two Utah electrochemists, Stanley Pons and Martin Fleischmann, announced that they had achieved cold fusion: fusion reactions which could occur at room temperatures. However, they made their announcements before any peer review of their work was performed, and no subsequent experiments by other researchers revealed any evidence of fusion.
  • 1990 - Decision to construct the NIF "beamlet" laser at LLNL is made.
  • 1991 - The START Tokamak fusion experiment begins in Culham. The experiment would eventually achieve a record beta (plasma pressure compared to magnetic field pressure) of 40% using a neutral beam injector. It was the first design that adapted the conventional toroidal fusion experiments into a tighter spherical design.
  • 1992 - The Engineering Design Activity for the ITER starts with participants EURATOM, Japan, Russia and United States. It ended in 2001.
    • The last nuclear bomb is tested.
  • 1993 - The TFTR tokamak at Princeton (PPPL) experiments with a 50% deuterium, 50% tritium mix, eventually producing as much as 10 megawatts of power from a controlled fusion reaction.
  • 1994 - NIF Beamlet laser is completed and begins experiments validating the expected performance of NIF.
    • The USA declassifies information about indirectly-driven (hohlraum) target design.
    • Comprehensive European-based study of HIF driver begins, centered at the Gesellshaft für Schwerionenforschung (GSI) and involving 14 laboratories, including USA and Russia. The Heavy Ion Driven Inertial Fusion (HIDIF) study will be completed in 1997.
  • 1996 - A record is reached at Tore Supra: a plasma duration of two minutes with a current of almost 1 million amperes driven non-inductively by 2.3 MW of lower hybrid frequency waves (i.e. 280 MJ of injected and extracted energy). This result was possible due to the actively cooled plasma-facing components installed in the machine, opening the way to the active control of steady state plasma discharges and the associated physics. [4]
  • 1997 - The JET tokamak in the UK produces 16 MW of fusion power - the current world record for fusion power. Four megawatts of alpha particle self-heating was achieved.
    • LLNL study compared projected costs of power from ICF and other fusion approaches to the projected future costs of existing energy sources. HIF power was estimated to cost slightly more than natural gas and slightly less than a next generation fission plant, without exploiting HIF’s ability to drive multiple fusion power chambers.
    • Groundbreaking ceremony held for the National Ignition Facility (NIF).
    • Combining a field-reversed pinch with an imploding magnetic cylinder results in the new Magnetized Target Fusion concept in the U.S.. In this system a "normal" lower density plasma device was explosively squeezed using techniques developed for high-speed gun research.
  • 1998 - The JT-60 tokamak in Japan produced a high performance reversed shear plasma with the equivalent fusion amplification factor of 1.25 - the current world record of Q, fusion energy gain factor.
    • Results of European-based study of heavy ion driven fusion power system (HIDIF, GSI-98-06) incorporates telescoping beams of multiple isotopic species. This technique multiplies the 6-D phase space usable for the design of HIF drivers.
  • 1999 - The United States withdraws from the ITER project.
  • 2001 - Building construction for the immense 192-beam 500-terawatt NIF project is completed and construction of laser beam-lines and target bay diagnostics commences, expecting to take its first full system shot in 2010.
    • Negotiations on the Joint Implementation of ITER begin between Canada, countries represented by the European Union, Japan and Russia.
  • 2002 - Claims and counter-claims are published regarding bubble fusion, in which a table-top apparatus was reported as producing small-scale fusion in a liquid undergoing acoustic cavitation. Like cold fusion (see 1989), it is later dismissed.
  • 2003 - The United States rejoins the ITER project with China and Republic of Korea also joining. Canada withdraws.
  • 2003 - Cadarache in France is selected as the European Candidate Site for ITER.
  • 2004 - The United States drops its own projects, recognising an inability to match EU progress (Fusion Ignition Research Experiment (FIRE)), and focuses resources on ITER.
  • 2005 - Following final negotiations between the EU and Japan, ITER chooses Cadarache over Rokkasho for the site of the reactor. In concession, Japan is able to host the related materials research facility and granted rights to fill 20% of the project's research posts while providing 10% of the funding.
    • The NIF fires its first bundle of eight beams achieving the highest ever energy laser pulse of 152.8 kJ (infrared).
  • 2006 - China's EAST test reactor is completed, the first tokamak experiment to use superconducting magnets to generate both the toroidal and poloidal fields.
  • 2009 - Construction of the NIF reported as complete.
    • Ricardo Betti, the third Under Secretary, responsible for Nuclear Energy, testifies before Congress: “IFE [ICF for energy production] has no home”.
    • Fusion Power Corporation files patent application for "Single Pass RF Driver" a RF Accelerator Driven HIF Process and Method.
  • 2010 - HIF-2010 Symposium in Darmstadt Germany. Robert J Burke presented on Single Pass HIF and Charles Helsley made a presentation on the commercialization of HIF within the decade.
  • 2011 - May 23–26, Workshop for Accelerators for Heavy Ion Fusion at Lawrence Berkeley National Laboratory, presentation by Robert J. Burke on "Single Pass Heavy Ion Fusion". The Accelerator Working Group publishes recommendations supporting moving RF accelerator Driven HIF toward commercialization.
  • 2012 - Stephen Slutz & Roger Vesey of Sandia National Labs publish a paper in Physical Review Letters presenting a computer simulation of the MagLIF concept showing it can produce high gain. According to the simulation, a 70 Mega Amp Z-pinch facility in combination with a Laser may be able to produce spectacular energy return of 1000 times the expended energy. A 60 MA facility would produce a 100x yield. [5] However, the idea to use the magnetic field of an intense particle beam for the entrapment of the fusion reaction alpha particles was already proposed in 1969 by Winterberg. [8]
    • - JET announces a major breakthrough in controlling instabilities in a fusion plasma. [6]
    • - August - Robert J. Burke presents updates to the SPRFD HIF process and Charles Helsley presents the Economics of SPRFD at the 19th International HIF Symposium at Berkeley, California. Industry was there in support of ion generation for SPRFD.
    • - Fusion Power Corporation SPRFD patent allowed in Russia.
  • 2013 - EAST tokamak test reactor achieves a record confinement time of 30 seconds for plasma in the high-confinement mode (H-mode), thanks to improvements in heat dipersal from tokamak walls. This is an improvement of an order of magnitude with respect to state-of-the-art reactors. [7]

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Template:Fusion power

External links

  1. ...the first money to be allocated [to controlled nuclear research] happened to be for Tuck, and was diverted from Project Lincoln, in the Hood Laboratory. The coincidence of names prompted the well-known cover name "Project Sherwood". James L. Tuck, "Curriculum Vita and Autobiography," Declassified document from Los Alamos National Laboratory (1974), reproduced with permission.
  2. http://www.efda.org/2010/04/lecture-of-i-v-kurchatov-at-harwell/
  3. Archives of the University of Stuttgart library, K.H. Hocker papers
  4. F. Winterberg, Z. f. Naturforsch. 19a, 231 (1964)
  5. F. Winterberg, Phys. Rev. 174, 212 (1968)
  6. "Proceedings of the International School of Physics 'Enrico Fermi' Physics of High Energy Density," July 1969. (1971)
  7. ...Gesellschaft für Schwerionenforschung; Institut für Plasmaphysik, Garching; Kernforschungszentrum Karlsruhe, University of Wisconsin, Madison; Max-Planck-Institut für Quantenoptik
  8. "Proceedings of the International School of Physics 'Enrico Fermi' Physics of High Energy Density," July 1969. (1971)