Scaled correlation: Difference between revisions
en>Melcombe doubtful notability |
→Matlab code: fix code formatting so that it shows as one block rather than two |
||
Line 1: | Line 1: | ||
In [[statistics]], the '''matrix t-distribution''' (or '''matrix variate t-distribution''') is the generalization of the [[multivariate t-distribution]] from vectors to [[matrix (mathematics)|matrices]].<ref>Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). [http://books.nips.cc/papers/files/nips20/NIPS2007_0896.pdf "Predictive Matrix-Variate ''t'' Models."] In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, ''NIPS '07: Advances in Neural Information Processing Systems'' 20, pages 1721-1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the [[matrix normal distribution]] article.</ref> The matrix t-distribution shares the same relationship with the multivariate t-distribution that the [[matrix normal distribution]] shares with the [[multivariate normal distribution]].{{clarify|date=May 2012}} For example, the matrix t-distribution is the [[compound distribution]] that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an [[inverse Wishart distribution]].{{cn|date=July 2012}} | |||
In a [[Bayesian multivariate linear regression|Bayesian analysis]] of a [[multivariate linear regression]] model based on the matrix normal distribution, the matrix t-distribution is the [[posterior predictive distribution]]. | |||
==Definition== | |||
{{Probability distribution| | |||
name =Matrix t| | |||
type =density| | |||
pdf_image =| | |||
cdf_image =| | |||
notation =<math>{\rm T}_{n,p}(\nu,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)</math>| | |||
parameters = | |||
<math>\mathbf{M}</math> [[location parameter|location]] ([[real number|real]] <math>n\times p</math> [[matrix (mathematics)|matrix]])<br/> | |||
<math>\boldsymbol\Omega</math> [[scale matrix|scale]] ([[positive-definite matrix|positive-definite]] [[real number|real]] <math>p\times p</math> [[matrix (mathematics)|matrix]])<br/> | |||
<math>\boldsymbol\Sigma</math> [[scale matrix|scale]] ([[positive-definite matrix|positive-definite]] real <math>n\times n</math> [[matrix (mathematics)|matrix]]) <br/> | |||
<math>\nu</math> [[degrees of freedom (statistics)|degrees of freedom]] | | |||
support =<math>\mathbf{X} \in\mathbb{R}^{n\times p}</math>| | |||
pdf =<math> | |||
\frac{\Gamma_p\left(\frac{\nu+n+p-1}{2}\right)}{(\pi)^\frac{np}{2} \Gamma_p\left(\frac{\nu+p-1}{2}\right)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}</math> | |||
:<math>\times \left|\mathbf{I}_n + \boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-\frac{\nu+n+p-1}{2}} | |||
</math> | |||
| | |||
cdf =No analytic expression| | |||
mean =<math>\mathbf{M}</math> if <math>\nu + p - n > 1</math>, else undefined| | |||
mode =<math>\mathbf{M}</math>| | |||
variance =<math>\frac{\boldsymbol\Sigma \otimes \boldsymbol\Omega}{\nu+p-n-2}</math> if <math>\nu + p - n > 2</math>, else undefined| | |||
kurtosis =| | |||
entropy =| | |||
mgf =| | |||
char =see below| | |||
}} | |||
For a matrix t-distribution, the [[probability density function]] at the point <math>\mathbf{X}</math> of an <math>n\times p</math> space is | |||
:<math> f(\mathbf{X} ; \nu,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega) = K | |||
\times \left|\mathbf{I}_n + \boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-\frac{\nu+n+p-1}{2}}, | |||
</math> | |||
where the constant of integration ''K'' is given by | |||
:<math> K = | |||
\frac{\Gamma_p\left(\frac{\nu+n+p-1}{2}\right)}{(\nu\pi)^\frac{np}{2} \Gamma_p\left(\frac{\nu+p-1}{2}\right)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}.</math> | |||
Here <math>\Gamma_p</math> is the [[multivariate gamma function]]. | |||
The [[characteristic function (probability theory)|characteristic function]] and various other properties can be derived from the generalized matrix t-distribution (see below). | |||
== Generalized matrix t-distribution == | |||
{{Probability distribution| | |||
name =Generalized matrix t| | |||
type =density| | |||
pdf_image =| | |||
cdf_image =| | |||
notation =<math>{\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)</math>| | |||
parameters = | |||
<math>\mathbf{M}</math> [[location parameter|location]] ([[real number|real]] <math>n\times p</math> [[matrix (mathematics)|matrix]])<br/> | |||
<math>\boldsymbol\Omega</math> [[scale matrix|scale]] ([[positive-definite matrix|positive-definite]] [[real number|real]] <math>p\times p</math> [[matrix (mathematics)|matrix]])<br/> | |||
<math>\boldsymbol\Sigma</math> [[scale matrix|scale]] ([[positive-definite matrix|positive-definite]] [[real number|real]] <math>n\times n</math> [[matrix (mathematics)|matrix]])<br/> | |||
<math>\alpha > (p-1)/2</math> [[shape parameter]]<br /> | |||
<math>\beta > 0</math> [[scale parameter]] | | |||
support =<math>\mathbf{X} \in\mathbb{R}^{n\times p}</math>| | |||
pdf =<math>\frac{\Gamma_p(\alpha+n/2)}{(2\pi/\beta)^\frac{np}{2} \Gamma_p(\alpha)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}</math> | |||
:<math>\times \left|\mathbf{I}_n + \frac{\beta}{2}\boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-(\alpha+n/2)}</math> | |||
*<math>\Gamma_p</math> is the [[multivariate gamma function]]. | |||
| | |||
cdf =No analytic expression| | |||
mean =<math>\mathbf{M}</math>| | |||
median =| | |||
mode =| | |||
variance =<math>\frac{2(\boldsymbol\Sigma \otimes \boldsymbol\Omega)}{\beta(2\alpha-n-1)}</math>| | |||
skewness =| | |||
kurtosis =| | |||
entropy =| | |||
mgf =| | |||
char =see below| | |||
}} | |||
The '''generalized matrix t-distribution''' is a generalization of the matrix t-distribution with two parameters ''α'' and ''β'' in place of ''ν''.<ref name="iranmanesha">Iranmanesha, Anis, M. Arashib and S. M. M. Tabatabaeya (2010). [http://www.ijmsi.ir/browse.php?a_id=139&slc_lang=en&sid=1&ftxt=1 "On Conditional Applications of Matrix Variate Normal Distribution"]. ''Iranian Journal of Mathematical Sciences and Informatics'', 5:2, pp. 33–43.</ref> | |||
This reduces to the standard matrix t-distribution with <math>\beta=2, \alpha=\frac{\nu+p-1}{2}.</math> | |||
The generalized matrix t-distribution is the [[compound distribution]] that results from an infinite [[mixture density|mixture]] of a matrix normal distribution with an [[inverse multivariate gamma distribution]] placed over either of its covariance matrices. | |||
===Properties=== | |||
If <math>\mathbf{X} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)</math> then{{citation needed|date=May 2012}} | |||
:<math>\mathbf{X}^{\rm T} \sim {\rm T}_{p,n}(\alpha,\beta,\mathbf{M}^{\rm T},\boldsymbol\Omega, \boldsymbol\Sigma).</math> | |||
This makes use of the following:{{citation needed|date=May 2012}} | |||
:<math>\det\left(\mathbf{I}_n + \frac{\beta}{2}\boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right) =</math> | |||
::<math>\det\left(\mathbf{I}_p + \frac{\beta}{2}\boldsymbol\Omega^{-1}(\mathbf{X}^{\rm T} - \mathbf{M}^{\rm T})\boldsymbol\Sigma^{-1}(\mathbf{X}^{\rm T}-\mathbf{M}^{\rm T})^{\rm T}\right) .</math> | |||
If <math>\mathbf{X} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)</math> and <math>\mathbf{A}(n\times n)</math> and <math>\mathbf{B}(p\times p)</math> are [[nonsingular matrices]] then{{citation needed|date=May 2012}} | |||
:<math>\mathbf{AXB} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{AMB},\mathbf{A}\boldsymbol\Sigma\mathbf{A}^{\rm T}, \mathbf{B}^{\rm T}\boldsymbol\Omega\mathbf{B}) | |||
.</math> | |||
The [[characteristic function (probability theory)|characteristic function]] is<ref name="iranmanesha"/> | |||
:<math>\phi_T(\mathbf{Z}) = \frac{\exp({\rm tr}(i\mathbf{Z}'\mathbf{M}))|\boldsymbol\Omega|^\alpha}{\Gamma_p(\alpha)(2\beta)^{\alpha p}} |\mathbf{Z}'\boldsymbol\Sigma\mathbf{Z}|^\alpha B_\alpha\left(\frac{1}{2\beta}\mathbf{Z}'\boldsymbol\Sigma\mathbf{Z}\boldsymbol\Omega\right),</math> | |||
where | |||
:<math>B_\delta(\mathbf{WZ}) = |\mathbf{W}|^{-\delta} \int_{\mathbf{S}>0} \exp\left({\rm tr}(-\mathbf{SW}-\mathbf{S^{-1}Z})\right)|\mathbf{S}|^{-\delta-\frac12(p+1)}d\mathbf{S},</math> | |||
and where <math>B_\delta</math> is the type-two [[Bessel function]] of Herz of a matrix argument. | |||
== See also == | |||
* [[multivariate t-distribution]]. | |||
* [[matrix normal distribution]]. | |||
==Notes == | |||
{{Reflist}} | |||
==External links== | |||
* [https://github.com/zweng/rmg A C++ library for random matrix generator] | |||
<!-- ==References == | |||
(fill in) --> | |||
{{ProbDistributions|multivariate}} | |||
[[Category:Random matrices]] | |||
[[Category:Multivariate continuous distributions]] | |||
[[Category:Probability distributions]] |
Revision as of 17:36, 8 December 2013
In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.[1] The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution.Template:Clarify For example, the matrix t-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution.Template:Cn
In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.
Definition
Template:Probability distribution
For a matrix t-distribution, the probability density function at the point of an space is
where the constant of integration K is given by
Here is the multivariate gamma function.
The characteristic function and various other properties can be derived from the generalized matrix t-distribution (see below).
Generalized matrix t-distribution
Template:Probability distribution
The generalized matrix t-distribution is a generalization of the matrix t-distribution with two parameters α and β in place of ν.[2]
This reduces to the standard matrix t-distribution with
The generalized matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.
Properties
If thenPotter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park.
This makes use of the following:Potter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park.
If and and are nonsingular matrices thenPotter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park.
The characteristic function is[2]
where
and where is the type-two Bessel function of Herz of a matrix argument.
See also
Notes
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
External links
55 yrs old Metal Polisher Records from Gypsumville, has interests which include owning an antique car, summoners war hack and spelunkering. Gets immense motivation from life by going to places such as Villa Adriana (Tivoli).
my web site - summoners war hack no survey ios
- ↑ Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). "Predictive Matrix-Variate t Models." In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721-1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.
- ↑ 2.0 2.1 Iranmanesha, Anis, M. Arashib and S. M. M. Tabatabaeya (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.