Scaled correlation: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Melcombe
doubtful notability
 
Matlab code: fix code formatting so that it shows as one block rather than two
Line 1: Line 1:


In [[statistics]], the '''matrix t-distribution''' (or '''matrix variate t-distribution''') is the generalization of the [[multivariate t-distribution]] from vectors to [[matrix (mathematics)|matrices]].<ref>Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). [http://books.nips.cc/papers/files/nips20/NIPS2007_0896.pdf "Predictive Matrix-Variate ''t'' Models."] In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, ''NIPS '07: Advances in Neural Information Processing Systems'' 20, pages 1721-1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the [[matrix normal distribution]] article.</ref> The matrix t-distribution shares the same relationship with the multivariate t-distribution that the [[matrix normal distribution]] shares with the [[multivariate normal distribution]].{{clarify|date=May 2012}}  For example, the matrix t-distribution is the [[compound distribution]] that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an [[inverse Wishart distribution]].{{cn|date=July 2012}}


The stars of British fashion will descend tonight to celebrate the in-house talent at the British Fashion [http://www.pcs-systems.co.uk/Images/celinebag.aspx http://www.pcs-systems.co.uk/Images/celinebag.aspx] Awards.<br><br>Click here to see an archive gallery of the British Designer of Year throughout the years<br>The annual event celebrates the creativity and success of the world's best fashion talents, including designers, models and writers. <br><br>This year the event expands and targets a wider audience whose able to attend a night packed with fashion icons, stars of the moment, emerging talent and fashion-conscious celebrities. It will take place at the English National Opera.<br>British Designer of the Year is one of the most emblematic awards of the night. It recognises an internationally acclaimed, leading British designer who directed the shape of fashion in the past year in both the UK and internationally. Stella McCartney bagged the award last year, together with Designer Brand of the Year, but 2013 sees different contenders.<br><br>The nominees are: Christopher Kane, [http://search.about.com/?q=Phoebe+Philo Phoebe Philo] and Sarah Burton for Womenswear Designer of the Yearand Christopher Bailey, Kim Jones and Tom Ford for Menswear.<br>As we wait for the winner, we take a look at the designers that have been awarded British Designer of Year since the 1980s.<br>Click here to see an archive gallery of the British Designer of Year throughout the years
In a [[Bayesian multivariate linear regression|Bayesian analysis]] of a [[multivariate linear regression]] model based on the matrix normal distribution, the matrix t-distribution is the [[posterior predictive distribution]].
 
==Definition==
{{Probability distribution|
  name      =Matrix t|
  type      =density|
  pdf_image  =|
  cdf_image =|
  notation  =<math>{\rm T}_{n,p}(\nu,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)</math>|
  parameters =
<math>\mathbf{M}</math> [[location parameter|location]] ([[real number|real]] <math>n\times p</math> [[matrix (mathematics)|matrix]])<br/>
<math>\boldsymbol\Omega</math> [[scale matrix|scale]] ([[positive-definite matrix|positive-definite]] [[real number|real]] <math>p\times p</math> [[matrix (mathematics)|matrix]])<br/>
<math>\boldsymbol\Sigma</math> [[scale matrix|scale]] ([[positive-definite matrix|positive-definite]] real <math>n\times n</math> [[matrix (mathematics)|matrix]]) <br/>
<math>\nu</math> [[degrees of freedom (statistics)|degrees of freedom]] |
  support    =<math>\mathbf{X} \in\mathbb{R}^{n\times p}</math>|
  pdf        =<math>
\frac{\Gamma_p\left(\frac{\nu+n+p-1}{2}\right)}{(\pi)^\frac{np}{2} \Gamma_p\left(\frac{\nu+p-1}{2}\right)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}</math>
:<math>\times \left|\mathbf{I}_n + \boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-\frac{\nu+n+p-1}{2}}
</math>
|
  cdf        =No analytic expression|
  mean      =<math>\mathbf{M}</math> if <math>\nu + p - n > 1</math>, else undefined|
  mode      =<math>\mathbf{M}</math>|
  variance  =<math>\frac{\boldsymbol\Sigma \otimes \boldsymbol\Omega}{\nu+p-n-2}</math> if <math>\nu + p - n > 2</math>, else undefined|
  kurtosis  =|
  entropy    =|
  mgf        =|
  char      =see below|
}}
 
 
For a matrix t-distribution, the [[probability density function]] at the point <math>\mathbf{X}</math> of an  <math>n\times p</math> space is
 
:<math> f(\mathbf{X} ; \nu,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega) = K
\times \left|\mathbf{I}_n + \boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-\frac{\nu+n+p-1}{2}},
</math>
 
where the constant of integration ''K'' is given by
:<math> K =
\frac{\Gamma_p\left(\frac{\nu+n+p-1}{2}\right)}{(\nu\pi)^\frac{np}{2} \Gamma_p\left(\frac{\nu+p-1}{2}\right)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}.</math>
 
Here <math>\Gamma_p</math> is the [[multivariate gamma function]].
 
The [[characteristic function (probability theory)|characteristic function]] and various other properties can be derived from the generalized matrix t-distribution (see below).
 
== Generalized matrix t-distribution ==
{{Probability distribution|
  name      =Generalized matrix t|
  type      =density|
  pdf_image  =|
  cdf_image  =|
  notation  =<math>{\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)</math>|
  parameters =
<math>\mathbf{M}</math> [[location parameter|location]] ([[real number|real]] <math>n\times p</math> [[matrix (mathematics)|matrix]])<br/>
<math>\boldsymbol\Omega</math> [[scale matrix|scale]] ([[positive-definite matrix|positive-definite]] [[real number|real]] <math>p\times p</math> [[matrix (mathematics)|matrix]])<br/>
<math>\boldsymbol\Sigma</math> [[scale matrix|scale]] ([[positive-definite matrix|positive-definite]] [[real number|real]] <math>n\times n</math> [[matrix (mathematics)|matrix]])<br/>
<math>\alpha > (p-1)/2</math> [[shape parameter]]<br />
<math>\beta > 0</math> [[scale parameter]] |
  support    =<math>\mathbf{X} \in\mathbb{R}^{n\times p}</math>|
  pdf        =<math>\frac{\Gamma_p(\alpha+n/2)}{(2\pi/\beta)^\frac{np}{2} \Gamma_p(\alpha)} |\boldsymbol\Omega|^{-\frac{n}{2}} |\boldsymbol\Sigma|^{-\frac{p}{2}}</math>
:<math>\times \left|\mathbf{I}_n + \frac{\beta}{2}\boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right|^{-(\alpha+n/2)}</math>
*<math>\Gamma_p</math> is the [[multivariate gamma function]].
|
  cdf        =No analytic expression|
  mean      =<math>\mathbf{M}</math>|
  median    =|
  mode      =|
  variance  =<math>\frac{2(\boldsymbol\Sigma \otimes \boldsymbol\Omega)}{\beta(2\alpha-n-1)}</math>|
  skewness  =|
  kurtosis  =|
  entropy    =|
  mgf        =|
  char      =see below|
}}
 
The '''generalized matrix t-distribution''' is a generalization of the matrix t-distribution with two parameters ''&alpha;'' and ''&beta;'' in place of ''&nu;''.<ref name="iranmanesha">Iranmanesha, Anis, M. Arashib and S. M. M. Tabatabaeya (2010). [http://www.ijmsi.ir/browse.php?a_id=139&slc_lang=en&sid=1&ftxt=1 "On Conditional Applications of Matrix Variate Normal Distribution"]. ''Iranian Journal of Mathematical Sciences and Informatics'', 5:2, pp. 33–43.</ref>
 
This reduces to the standard matrix t-distribution with <math>\beta=2, \alpha=\frac{\nu+p-1}{2}.</math>
 
The generalized matrix t-distribution is the [[compound distribution]] that results from an infinite [[mixture density|mixture]] of a matrix normal distribution with an [[inverse multivariate gamma distribution]] placed over either of its covariance matrices.
 
===Properties===
 
If <math>\mathbf{X} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)</math> then{{citation needed|date=May 2012}}
:<math>\mathbf{X}^{\rm T} \sim {\rm T}_{p,n}(\alpha,\beta,\mathbf{M}^{\rm T},\boldsymbol\Omega, \boldsymbol\Sigma).</math>
 
This makes use of the following:{{citation needed|date=May 2012}}
 
:<math>\det\left(\mathbf{I}_n + \frac{\beta}{2}\boldsymbol\Sigma^{-1}(\mathbf{X} - \mathbf{M})\boldsymbol\Omega^{-1}(\mathbf{X}-\mathbf{M})^{\rm T}\right) =</math>
::<math>\det\left(\mathbf{I}_p + \frac{\beta}{2}\boldsymbol\Omega^{-1}(\mathbf{X}^{\rm T} - \mathbf{M}^{\rm T})\boldsymbol\Sigma^{-1}(\mathbf{X}^{\rm T}-\mathbf{M}^{\rm T})^{\rm T}\right) .</math>
 
If <math>\mathbf{X} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{M},\boldsymbol\Sigma, \boldsymbol\Omega)</math> and <math>\mathbf{A}(n\times n)</math> and <math>\mathbf{B}(p\times p)</math> are [[nonsingular matrices]] then{{citation needed|date=May 2012}}
 
:<math>\mathbf{AXB} \sim {\rm T}_{n,p}(\alpha,\beta,\mathbf{AMB},\mathbf{A}\boldsymbol\Sigma\mathbf{A}^{\rm T}, \mathbf{B}^{\rm T}\boldsymbol\Omega\mathbf{B})
.</math>
 
The [[characteristic function (probability theory)|characteristic function]] is<ref name="iranmanesha"/>
 
:<math>\phi_T(\mathbf{Z}) = \frac{\exp({\rm tr}(i\mathbf{Z}'\mathbf{M}))|\boldsymbol\Omega|^\alpha}{\Gamma_p(\alpha)(2\beta)^{\alpha p}} |\mathbf{Z}'\boldsymbol\Sigma\mathbf{Z}|^\alpha B_\alpha\left(\frac{1}{2\beta}\mathbf{Z}'\boldsymbol\Sigma\mathbf{Z}\boldsymbol\Omega\right),</math>
 
where
:<math>B_\delta(\mathbf{WZ}) = |\mathbf{W}|^{-\delta} \int_{\mathbf{S}>0} \exp\left({\rm tr}(-\mathbf{SW}-\mathbf{S^{-1}Z})\right)|\mathbf{S}|^{-\delta-\frac12(p+1)}d\mathbf{S},</math>
 
and where <math>B_\delta</math> is the type-two [[Bessel function]] of Herz of a matrix argument.
 
== See also ==
* [[multivariate t-distribution]].
* [[matrix normal distribution]].
 
==Notes ==
{{Reflist}}
 
==External links==
* [https://github.com/zweng/rmg A C++ library for random matrix generator]
 
 
<!-- ==References ==
(fill in) -->
 
{{ProbDistributions|multivariate}}
 
[[Category:Random matrices]]
[[Category:Multivariate continuous distributions]]
[[Category:Probability distributions]]

Revision as of 17:36, 8 December 2013

In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.[1] The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution.Template:Clarify For example, the matrix t-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution.Template:Cn

In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.

Definition

Template:Probability distribution


For a matrix t-distribution, the probability density function at the point X of an n×p space is

f(X;ν,M,Σ,Ω)=K×|In+Σ1(XM)Ω1(XM)T|ν+n+p12,

where the constant of integration K is given by

K=Γp(ν+n+p12)(νπ)np2Γp(ν+p12)|Ω|n2|Σ|p2.

Here Γp is the multivariate gamma function.

The characteristic function and various other properties can be derived from the generalized matrix t-distribution (see below).

Generalized matrix t-distribution

Template:Probability distribution

The generalized matrix t-distribution is a generalization of the matrix t-distribution with two parameters α and β in place of ν.[2]

This reduces to the standard matrix t-distribution with β=2,α=ν+p12.

The generalized matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.

Properties

If XTn,p(α,β,M,Σ,Ω) thenPotter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park.

XTTp,n(α,β,MT,Ω,Σ).

This makes use of the following:Potter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park.

det(In+β2Σ1(XM)Ω1(XM)T)=
det(Ip+β2Ω1(XTMT)Σ1(XTMT)T).

If XTn,p(α,β,M,Σ,Ω) and A(n×n) and B(p×p) are nonsingular matrices thenPotter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park.

AXBTn,p(α,β,AMB,AΣAT,BTΩB).

The characteristic function is[2]

ϕT(Z)=exp(tr(iZM))|Ω|αΓp(α)(2β)αp|ZΣZ|αBα(12βZΣZΩ),

where

Bδ(WZ)=|W|δS>0exp(tr(SWS1Z))|S|δ12(p+1)dS,

and where Bδ is the type-two Bessel function of Herz of a matrix argument.

See also

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

External links


55 yrs old Metal Polisher Records from Gypsumville, has interests which include owning an antique car, summoners war hack and spelunkering. Gets immense motivation from life by going to places such as Villa Adriana (Tivoli).

my web site - summoners war hack no survey ios

  1. Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). "Predictive Matrix-Variate t Models." In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721-1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.
  2. 2.0 2.1 Iranmanesha, Anis, M. Arashib and S. M. M. Tabatabaeya (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.