|
|
Line 1: |
Line 1: |
| Calculations in the [[Newman–Penrose formalism|Newman–Penrose (NP) formalism]] of [[general relativity]] normally begin with the '''construction of a complex null tetrad''' <math>\{l^a,n^a,m^a,\bar{m}^a\}</math>, where <math>\{l^a,n^a\}</math> is a pair of ''real'' null vectors and <math>\{m^a,\bar{m}^a\}</math> is a pair of ''complex'' null vectors. These tetrad [[Vector field|vectors]] respect the following normalization and metric conditions assuming the spacetime signature <math>(-,+,+,+):</math>
| | In recent months, a number of strategic acquisitions have been made, and the company will be launching new products later this year in an effort to take advantage of the strength in e cigarettes.<br>Some important figures Usually lenders will approve you bad credit cash advance loan with an amount in the range to Because of the poor credit status of the borrower If you cherished this short article and you would like to get extra info relating to [http://www.bendtrapclub.com/cheap/ugg.asp Cheap Uggs Boots] kindly take a look at our page. interest rate will be quite high air jordan pas cher. Sometimes it can be as higher as 25% of the amount taken oakley.<br>http://www.hamiltonorchards.com/kors/?p=173 <br /> http://www.hamiltonorchards.com/kors/?p=17 <br /> http://www.hamiltonorchards.com/kors/?p=204 <br /> http://www.hamiltonorchards.com/kors/?p=193 <br /> http://www.hamiltonorchards.com/kors/?p=179 <br /> <br>http://wiki.sibarcelona.es/index.php/What_s_Really_Happening_With_Bags_Outlet<br>http://wiki.samantcms.fr/index.php/Having_A_Provocative_Bags_Outlet_Works_Only_Under_These_Conditions |
| | |
| *<math>l_a l^a=n_a n^a=m_a m^a=\bar{m}_a \bar{m}^a=0\,;</math>
| |
| *<math>l_a m^a=l_a \bar{m}^a=n_a m^a=n_a \bar{m}^a=0\,;</math>
| |
| *<math>l_a n^a=l^a n_a=-1\,,\;\; m_a \bar{m}^a=m^a \bar{m}_a=1\,;</math>
| |
| *<math>g_{ab}=-l_a n_b - n_a l_b +m_a \bar{m}_b +\bar{m}_a m_b\,, \;\; g^{ab}=-l^a n^b - n^a l^b +m^a \bar{m}^b +\bar{m}^a m^b\,.</math>
| |
| | |
| Only after the tetrad <math>\{l^a,n^a,m^a,\bar{m}^a\}</math> gets constructed can one move forward to compute the [[Newman–Penrose_formalism#Four_directional_derivatives|directional derivatives]], [[Newman–Penrose_formalism#Twelve_spin_coefficients|spin coefficients]], [[Newman–Penrose_formalism#Commutators|commutators]], [[Weyl scalar|Weyl-NP scalars]] <math>\Psi_i</math>, [[Ricci scalars (Newman-Penrose formalism)|Ricci-NP scalars]] <math>\Phi_{ij}</math> and [[Newman–Penrose_formalism#Maxwell-NP_scalars.2C_Maxwell_equations_in_NP_formalism|Maxwell-NP scalars]] <math>\phi_i</math> and other quantities in NP formalism. There are three most commonly used methods to construct a complex null tetrad:
| |
| | |
| # All four tetrad vectors are [[Holonomic basis|nonholonomic]] combinations of [[Tetrad formalism|orthonormal holonomic tetrads]];<ref name=demystified>David McMahon. ''Relativity Demystified - A Self-Teaching Guide''. Chapter 9: ''Null Tetrads and the Petrov Classification''. New York: McGraw-Hill, 2006.</ref>
| |
| # <math>l^a</math> (or <math>n^a</math>) are aligned with the outgoing (or ingoing) tangent vector field of [[Null vector|null]] radial [[Geodesic (general relativity)|geodesics]], while <math>m^a</math> and <math>\bar{m}^a</math> are constructed via the nonholonomic method;<ref name=chandra>Subrahmanyan Chandrasekhar. ''The Mathematical Theory of Black Holes''. Section ξ20, Section ξ21, Section ξ41, Section ξ56, Section ξ63(b). Chicago: University of Chikago Press, 1983.</ref>
| |
| # A tetrad which is adapted to the spacetime structure from a 3+1 perspective, with its general form being assumed and tetrad functions therein to be solved.
| |
| | |
| In the context below, it will be shown how these three methods work.
| |
| | |
| Note: In addition to the convention <math>\{(-,+,+,+); l^a n_a=-1\,,m^a \bar{m}_a=1\}</math> employed in this article, the other one in use is <math>\{(+,-,-,-); l^a n_a=1\,,m^a \bar{m}_a=-1\}</math>.
| |
| | |
| ==Nonholonomic tetrad==
| |
| | |
| The primary method to construct a complex null tetrad is via combinations of orthonormal bases.<ref name="demystified" /> For a spacetime <math>g_{ab}</math> with an orthonormal tetrad <math>\{\omega_0\,,\omega_1\,,\omega_2\,,\omega_3 \}</math>,
| |
| | |
| <math>g_{ab}=-\omega_0\omega_0+\omega_1\omega_1+\omega_2\omega_2+\omega_3\omega_3\,,</math>
| |
| | |
| the covectors <math>\{l_a\,,n_a\,,m_a\,,\bar{m}_a\}</math> of the ''nonholonomic'' complex null tetrad can be constructed by
| |
| | |
| <math>l_adx^a=\frac{\omega_0+\omega_1}{\sqrt{2}}\,,\quad n_adx^a=\frac{\omega_0-\omega_1}{\sqrt{2}}\,,</math><br />
| |
| <math>m_adx^a=\frac{\omega_2+i\omega_3}{\sqrt{2}}\,,\quad \bar{m}_adx^a=\frac{\omega_2-i\omega_3}{\sqrt{2}}\,,</math>
| |
| | |
| and the tetrad vectors <math>\{l^a\,,n^a\,,m^a\,,\bar{m}^a\}</math> can be obtained by raising the indices of <math>\{l_a\,,n_a\,,m_a\,,\bar{m}_a\}</math> via the inverse metric <math>g^{ab}</math>.
| |
| | |
| Remark: The nonholonomic construction is actually in accordance with the local [[light cone]] structure.<ref name="demystified" />
| |
| | |
| <div style="clear:both;width:65%;" class="NavFrame collapsed">
| |
| <div class="NavHead" style="background-color:#FFFFFF; text-align:left; font-size:larger;">Example: A nonholonomic tetrad</div>
| |
| <div class="NavContent" style="text-align:left;">
| |
| Given a spacetime metric of the form (in signature(-,+,+,+))
| |
| :<math>g_{ab}=-g_{tt}dt^2+g_{rr}dr^2+g_{\theta\theta}d\theta^2+g_{\phi\phi}d\phi^2\,,</math>
| |
| | |
| the nonholonomic orthonormal covectors are therefore
| |
| :<math>\omega_t=\sqrt{g_{tt}}dt\,,\;\;\omega_r=\sqrt{g_{rr}}dr\,,\;\;\omega_\theta=\sqrt{g_{\theta\theta}}d\theta\,,\;\;\omega_\phi=\sqrt{g_{\phi\phi}}d\phi\,,</math>
| |
| | |
| and the nonholonomic null covectors are therefore
| |
| | |
| :<math>l_adx^a=\frac{1}{\sqrt{2}}(\sqrt{g_{tt}}dt+\sqrt{g_{rr}}dr)\,,</math> <math> n_adx^a=\frac{1}{\sqrt{2}}(\sqrt{g_{tt}}dt-\sqrt{g_{rr}}dr)\,,</math>
| |
| :<math>m_adx^a=\frac{1}{\sqrt{2}}(\sqrt{g_{\theta\theta}}d\theta+i\sqrt{g_{\phi\phi}}d\phi)\,,</math> <math> \bar{m}_adx^a=\frac{1}{\sqrt{2}}(\sqrt{g_{\theta\theta}}d\theta-i\sqrt{g_{\phi\phi}}d\phi)\,.</math>
| |
| | |
| </div>
| |
| </div>
| |
| | |
| ==l<sup>a</sup> (n<sup>a</sup>) aligned with null radial geodesics==
| |
| | |
| In [[Minkowski spacetime]], the nonholonomically constructed null vectors <math>\{l^a\,,n^a\}</math> respectively match the outgoing and ingoing ''null radial'' rays. As an extension of this idea in generic curved spacetimes, <math>\{l^a\,,n^a\}</math> can still be aligned with the tangent vector field of null radial [[Congruence (general relativity)|congruence]].<ref name="chandra" /> However, this types of adaption only work for <math>\{t,r,\theta,\phi\}</math>, <math>\{u,r,\theta,\phi\}</math> or <math>\{v,r,\theta,\phi\}</math> coordinates where the ''radial'' behaviors can be well described, with <math>u</math> and <math>v</math> denote the outgoing (retarded) and ingoing (advanced) null coordinate respectively.
| |
| | |
| <div style="clear:both;width:65%;" class="NavFrame collapsed">
| |
| <div class="NavHead" style="background-color:#FFFFFF; text-align:left; font-size:larger;">Example: Null tetrad for Schwarzschild metric in Eddington-Finkestein coordinates </div>
| |
| <div class="NavContent" style="text-align:left;">
| |
| | |
| The Schwarzschild metric in Eddington-Finkestein coordinates reads
| |
| | |
| <math>ds^2=-Fdv^2+2dvdr+r^2(d\theta^2+\sin^2\!\theta\,d\phi^2)\,,\;\;\text{with } F\,:=\,\Big(1-\frac{M}{r} \Big)^2\,,</math>
| |
| | |
| so the Lagrangian for null radial [[Geodesics in general relativity|geodesics]] of the Schwarzschild spacetime is
| |
| | |
| <math>L=-F\dot{v}^2+2\dot{v}\dot{r}\,,</math>
| |
| | |
| which has an ''ingoing'' solution <math>\dot{v}=0</math> and an outgoing solution <math>\dot{r}=\frac{F}{2}\dot{v}</math>. Now, we can construct a complex null tetrad which is adapted to the ingoing null radial geodesics:
| |
| | |
| <math>l^a=(1,\frac{F}{2},0,0)\,,\quad n^a=(0,-1,0,0)\,,\quad m^a=\frac{1}{\sqrt{2}\,r}(0,0,1,i\,\csc\theta)\,,</math>
| |
| | |
| and the dual basis covectors are therefore
| |
| | |
| <math>l_a=(-\frac{F}{2},1,0,0)\,,\quad n_a=(-1,0,0,0)\,,\quad m_a=\frac{r}{\sqrt{2}}(0,0,1,\sin\theta)\,.</math>
| |
| | |
| Here we utilized the cross-normalization condition <math>l^an_a=n^al_a=-1</math> as well as the requirement that <math>g_{ab}+l_an_b+n_al_b</math> should span the induced metric <math>h_{AB}</math> for cross-sections of {v=constant, r=constant}, where it is important to recall that <math>dv</math> and <math>dr</math> are not mutually orthogonal. Also, the remaining two tetrad (co)vectors is constructed nonholonomically. With the tetrad defined, we are now able to respectively find out the spin coefficients, Weyl-Np scalars and Ricci-NP scalars that
| |
| | |
| <math>\kappa=\sigma=\tau=0\,,\quad \nu=\lambda=\pi=0\,,\quad \gamma=0 </math><br />
| |
| <math>\rho=\frac{-r+2M}{2r^2}\,,\quad \mu=-\frac{1}{r}\,,\quad \alpha=-\beta=\frac{-\sqrt{2}\cot\theta}{4r}\,,\quad \varepsilon=\frac{M}{2r^2}\,;</math>
| |
| | |
| <math>\Psi_0=\Psi_1=\Psi_3=\Psi_4=0\,,\quad \Psi_2=-\frac{M}{r^3}\,,</math>
| |
| | |
| <math>\Phi_{00}=\Phi_{10}=\Phi_{20}=\Phi_{11}=\Phi_{12}=\Phi_{22}=\Lambda=0 \,.</math>
| |
| | |
| </div>
| |
| </div>
| |
| | |
| <div style="clear:both;width:65%;" class="NavFrame collapsed">
| |
| <div class="NavHead" style="background-color:#FFFFFF; text-align:left; font-size:larger;">Example: Null tetrad for extremal Reissner-Nordström metric in Eddington-Finkestein coordinates</div>
| |
| <div class="NavContent" style="text-align:left;">
| |
| | |
| The Reissner-Nordström metric in ingoing Eddington-Finkestein coordinates reads
| |
| | |
| :<math>ds^2=- G dv^2+2dvdr+r^2 d\theta^2+r^2\sin^2\!\theta\,d\phi^2\,,\;\;\text{with } G\,:=\,\Big(1-\frac{M}{r} \Big)^2\,,</math>
| |
| | |
| so the Lagrangian is
| |
| | |
| :<math>2L=- G \dot v^2+2\dot v \dot r+r^2 ({\dot\theta}^2+r^2\sin^2\!\theta\,\dot\phi^2\,.</math>
| |
| | |
| For null radial geodesics with <math>\{L=0\,,\dot\theta=0\,,\dot\phi=0\}</math>, we have two solutions
| |
| | |
| :<math>\dot v=0</math> (ingoing) and <math>\dot r=2F\dot v</math> (outgoing),
| |
| | |
| and therefore the tetrad for an ingoing observer can be set up as
| |
| :<math>l^a\partial_a\,=\, \Big(1\,,\frac{F}{2}\,,0\,,0 \Big)\,,\quad n^a\partial_a\,=\,\Big(0\,,-1\,,0\,,0 \Big)\,, </math>
| |
| :<math>l_adx^a\,=\, \Big(-\frac{F}{2}\,,1\,,0,0 \Big)\,,\quad n_adx^a\,=\,\Big(-1\,,0\,,0\,,0 \Big)\,,</math>
| |
| :<math>m^a\partial_a\,=\,\frac{1}{\sqrt{2}}\, \Big(0\,,0\,,\frac{1}{r}\,,\frac{i}{r\sin\theta} \Big) \,,\quad m_a dx^a\,=\,\frac{1}{\sqrt{2}}\,\Big(0\,,0\,,r\,,i\sin\theta \Big)\,.</math>
| |
| | |
| With the tetrad defined, we are now able to work out the spin coefficients, Weyl-NP scalars and Ricci-NP scalars that
| |
| | |
| <math>\kappa=\sigma=\tau=0\,,\quad \nu=\lambda=\pi=0\,,\quad \gamma=0 </math><br />
| |
| <math>\rho=\frac{(r-M)^2}{2r^3}\,,\quad \mu=-\frac{1}{r}\,,\quad \alpha=-\beta=\frac{-\sqrt{2}\cot\theta}{4r}\,,\quad \varepsilon=\frac{M(r-M)}{2r^3}\,;</math>
| |
| | |
| <math>\Psi_0=\Psi_1=\Psi_3=\Psi_4=0\,,\quad \Psi_2=-\frac{(Mr-M)}{r^4}\,,</math>
| |
| | |
| <math>\Phi_{00}=\Phi_{10}=\Phi_{20}=\Phi_{12}=\Phi_{22}=\Lambda=0 \,,\quad \Phi_{11}=-\frac{M^2}{2r^4} \,.</math>
| |
| | |
| </div>
| |
| </div>
| |
| | |
| ==Tetrads adapted to the spacetime structure==
| |
| | |
| At some typical boundary regions such as [[Null vector|null]] infinity, [[Timelike Infinity|timelike infinity]], [[Spacelike vector|spacelike]] infinity, [[black hole]] horizons and [[cosmological horizon]]s, null tetrads adapted to spacetime structures are usually employed to achieve the most succinct [[Newman-Penrose formalism|Newman-Penrose]] descriptions.
| |
| | |
| ===Newman-Unti tetrad for null infinity===
| |
| | |
| For null infinity, the classic Newman-Unti (NU) tetrad<ref>Ezra T Newman, Theodore W J Unti. ''Behavior of asymptotically flat empty spaces''. Journal of Mathematical Physics, 1962, '''3'''(5): 891-901.</ref><ref>Ezra T Newman, Roger Penrose. ''An Approach to Gravitational Radiation by a Method of Spin Coefficients''. Section IV. Journal of Mathematical Physics, 1962, '''3'''(3): 566-768.</ref><ref name=AppendixB>E T Newman, K P Tod. ''Asymptotically Flat Spacetimes'', Appendix B. In A Held (Editor): ''General relativity and gravitation: one hundred years after the birth of Albert Einstein''. Vol(2), page 1-34. New York and London: Plenum Press, 1980.</ref> is employed to study [[asymptotic behavior]]s at ''null infinity'',
| |
| | |
| <math>l^a\partial_a=\partial_r:=D\,,</math><br />
| |
| <math>n^a\partial_a=\partial_u +U\partial_r +X\partial_\varsigma+\bar{X} \partial_{\bar \varsigma}:=\Delta\,,</math><br />
| |
| <math>m^a\partial_a=\omega\partial_r+\xi^3\partial_\varsigma +\xi^4\partial_{\bar \varsigma}:=\delta\,,</math><br />
| |
| <math>\bar{m}^a\partial_a=\bar{\omega}\partial_r+\bar{\xi}^3\partial_{\bar\varsigma} +\bar{\xi}^4\partial_{ \varsigma}:=\bar\delta\,,</math>
| |
| | |
| where <math>\{U, X, \omega, \xi^3, \xi^4\}</math> are tetrad functions to be solved. For the NU tetrad, the foliation leaves are parameterized by the ''outgoing'' (advanced) null coordinate <math>u</math> with <math>l_a=du</math>, and <math>r</math> is the normalized [[Affine parameter|affine]] coordinate along <math>l^a</math> <math>(Dr=l^a\partial_ar=1)</math>; the ingoing null vector <math>n^a</math> acts as the null generator at null infinity with <math>\Delta u=n^a\partial_a u=1</math>. The coordinates <math>\{u,r,\varsigma, \bar{\varsigma}\}</math> comprise two real affine coordinates <math>\{u,r\}</math> and two complex [[stereographic]] coordinates <math>\{\varsigma:= e^{i\phi}\cot\frac{\theta}{2}, \bar{\varsigma}=e^{-i\phi}\cot\frac{\theta}{2}\}</math>, where <math>\{\theta,\phi\}</math> are the usual spherical coordinates on the cross-section <math>\hat\Delta_u=S^2_u</math> (as shown in ref.,<ref name="AppendixB" /> ''complex stereographic'' rather than ''real [[Isothermal coordinates|isothermal]]'' coordinates are used just for the convenience of completely solving NP equations).
| |
| | |
| Also, for the NU tetrad, the basic gauge conditions are
| |
| | |
| <math>\kappa=\pi=\varepsilon=0\,,\quad \rho=\bar\rho\,,\quad \tau=\bar\alpha+\beta\,.</math>
| |
| | |
| === Adapted tetrad for exteriors and near-horizon vicinity of isolated horizons ===
| |
| | |
| For a more comprehensive view of black holes in quasilocal definitions, adapted tetrads which can be smoothly transited from the exterior to the [[Near-horizon metric|near-horizon vicinity]] and to the horizons are required. For example, for [[isolated horizons]] describing black holes in equilibrium with their exteriors, such a tetrad and the related coordinates can be constructed this way.<ref>Xiaoning Wu, Sijie Gao. ''Tunneling effect near weakly isolated horizon''. Physical Review D, 2007, '''75'''(4): 044027. [http://arxiv.org/abs/gr-qc/0702033 arXiv:gr-qc/0702033v1]</ref><ref>Xiaoning Wu, Chao-Guang Huang, Jia-Rui Sun. ''On gravitational anomaly and Hawking radiation near weakly isolated horizon''. Physical Review D, 2008, '''77'''(12): 124023. [http://arxiv.org/abs/0801.1347 arXiv:0801.1347v1(gr-qc)]</ref><ref>Yu-Huei Wu, Chih-Hung Wang. ''Gravitational radiation of generic isolated horizons''. [http://arxiv.org/abs/0807.2649 arXiv:0807.2649v1(gr-qc)]</ref><ref>Xiao-Ning Wu, Yu Tian. ''Extremal isolated horizon/CFT correspondence''. Physical Review D, 2009, '''80'''(2): 024014. [http://arxiv.org/abs/0904.1554v3 arXiv: 0904.1554(hep-th)]</ref><ref>Yu-Huei Wu, Chih-Hung Wang. ''Gravitational radiations of generic isolated horizons and non-rotating dynamical horizons from asymptotic expansions''. Physical Review D, 2009, '''80'''(6): 063002. [http://arxiv.org/abs/0906.1551 arXiv:0906.1551v1(gr-qc)]</ref><ref>Badri Krishnan. ''The spacetime in the neighborhood of a general isolated black hole''. [http://arxiv.org/abs/1204.4345 arXiv:1204.4345v1 (gr-qc)]</ref> Choose the first real null covector <math>n_a</math> as the gradient of foliation leaves
| |
| | |
| <math>
| |
| n_a\,=-dv \,,
| |
| </math><br />
| |
| where <math>v</math> is the ''ingoing'' (retarded) [[Eddington-Finkelstein coordinates|Eddington-Finkelstein-type]] null coordinate, which labels the foliation cross-sections and acts as an affine parameter with regard to the outgoing null vector field <math>l^a\partial_a</math>, i.e.
| |
| | |
| <math>
| |
| Dv=1 \,,\quad \Delta v=\delta v=\bar\delta v=0\,.
| |
| </math><br />
| |
| Introduce the second coordinate <math>r</math> as an affine parameter along the ingoing null vector field <math>n^a</math>, which obeys the normalization
| |
| | |
| <math>
| |
| n^a\partial_a r \,=\,-1 \; \Leftrightarrow\; n^a\partial_a \,=\, -\partial_r\,.
| |
| </math>
| |
| | |
| Now, the first real null tetrad vector <math>n^a</math> is fixed. To determine the remaining tetrad vectors <math>\{l^a,m^a,\bar m^a\}</math> and their covectors, besides the basic cross-normalization conditions, it is also required that: (i) the outgoing null normal field <math>l^a</math> acts as the null generators; (ii) the null frame (covectors) <math>\{l_a, n_a, m_a, \bar m_a\}</math> are parallelly propagated along <math>n^a\partial_a</math>; (iii) <math>\{m^a,\bar m^a\}</math> spans the {t=constant, r=constant} cross-sections which are labeled by ''real'' [[isothermal coordinates]] <math>\{y,z\}</math>.
| |
| | |
| Tetrads satisfying the above restrictions can be expressed in the general form that
| |
| | |
| <math>l^a\partial_a=\partial_v +U\partial_r +X^3\partial_y+X^4 \partial_{ z }\, := \,D \,,</math><br />
| |
| <math>n^a\partial_a=-\partial_r\, := \,\Delta \,,</math><br />
| |
| <math>m^a\partial_a=\Omega\partial_r+\xi^3\partial_y +\xi^4\partial_{ z } \, := \,\delta \,,</math><br />
| |
| <math>\bar{m}^a\partial_a=\bar{\Omega}\partial_r +\bar{\xi}^3\partial_{ y}+\bar{\xi}^4\partial_{ z } \, := \,\bar\delta \,.</math>
| |
| | |
| The gauge conditions in this tetrad are
| |
| | |
| <math>\nu=\tau=\gamma=0\,,\quad \mu=\bar\mu\,,\quad \pi=\alpha+\bar\beta\,,</math>
| |
| | |
| Remark: Unlike [[Schwarzschild coordinates|Schwarzschild-type coordinates]], here r=0 represents the [[Event horizon|horizon]], while r>0 (r<0) corresponds to the exterior (interior) of an isolated horizon. People often [[Taylor expansion|Taylor]] expand a scalar <math>Q</math> function with respect to the horizon r=0,
| |
| | |
| <math>
| |
| Q=\sum_{i=0} Q^{(i)}r^i=Q^{(0)}+Q^{(1)}r+\cdots +Q^{(n)}r^n+\ldots
| |
| </math>
| |
| | |
| where <math>Q^{(0)}</math> refers to its on-horizon value. The very coordinates used in the adapted tetrad above are actually the [[Gaussian null coordinates]] employed in studying near-horizon geometry and mechanics of black holes.
| |
| | |
| ==See also==
| |
| *[[Newman-Penrose formalism]]
| |
| | |
| ==References==
| |
| {{reflist}}
| |
| | |
| [[Category:General relativity]]
| |
| [[Category:Mathematical methods in general relativity]]
| |