Non-expanding horizon: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Yobot
m Adapted tetrad on NEHs and further properties: Reference before punctuation detected and fixed using AWB (9585)
en>Orenburg1
m sp
 
Line 1: Line 1:
{{multiple issues|
Our hotel is centrally located to all of the Tri Cities' area attractions, from the nearby Fashion Square Mall and Saginaw Art Museum to the open waters of Saginaw Bay.<br>The reasons Bruce abandons the scene of his crime become clearer over the course of the film, but most of his other decisions making a makeshift home out of his broken down snowplow, attempting a foolishly haphazard raid on a nearby cottage are difficult to grasp. That a haggard Haden Church plays Bruce completely straight only adds to the confusion, you wonder whether Whitewash is a sincere attempt to make a thriller gone desperately wrong.<br>http://caphsa.org/coach/?key=coach-factory-free-shipping-10 <br /> http://caphsa.org/coach/?key=coach-factory-bags-21 <br /> http://caphsa.org/coach/?key=coach-factory-outlet-shoes-66 <br /> http://caphsa.org/coach/?key=coach-factory-free-shipping-10 <br /> http://caphsa.org/coach/?key=what-happened-to-coach-factory-online-73 <br /> <br>http://wikis. If you beloved this write-up and you would like to obtain far more data about [http://www.bendtrapclub.com/cheap/ugg.asp Cheap Uggs Boots] kindly visit the website. ala.org/acrl/index.php/Main_Page<br>http://wiki.progdesigner.com/index.php?title=How_To_Find_Out_Everything_There_Is_To_Know_About_Bags_Outlet_In_7_Simple_Steps
{{no footnotes|date=September 2012}}
{{orphan|date=August 2012}}
}}
 
The Taylor polyhedra are the vertex-transitive polyhedra that are not included in the standard list of [[uniform polyhedra]]. 
 
Some are omitted because they include the double faces {<sup>2</sup>3},{<sup>2</sup>5/2 and {<sup>2</sup>5} that naturally result from the truncation of the inverse polygons {3/2} and {5/4} and the star polygon {5/2} respectively, all even denominator polygons.
 
Others are omitted because they include the cross polygon {4/2} and its double faced natural truncation {<sup>2</sup>4}, used to form the {4,4/2} family of cross polyhedra, analogous to the {5,5/2} family of star polyhedra.
 
Taken with the accepted uniform polyhedra, the Taylor polyhedra allow a more complete classification to emerge, without the peculiar gaps that currently exist within the uniform polyhedra.
 
These polyhedra generally have densities greater than 1, the tiling of the sphere that produces them taking place in multiple layers with several visits to any one vertex or edge
 
== List ==
{| class="wikitable sortable" style="text-align:center"
! Name
! [[Wythoff symbol|Wythoff<br>symbol]]
! [[Schlafli symbol|Schl&auml;fli symbol]]
! Taylor reference
! Vertex figure
! Vertices
! Edges
! Faces by type
|-
| [[Quasitruncated tetrahedron]]
| 3&nbsp;2 &#124;<sup>3</sup>/<sub>2</sub>
| t{3’, 3}
| {3, <sup>3</sup>/<sub>2</sub>}&nbsp;+&nbsp;2{3,&nbsp;3}
| <sup>2</sup>3.<sup>2</sup>3.3
| 4&times;3
| 6&times;3
| 4&times;<sup>2</sup>3<br>4&times;3
|-
| [[Quasitruncated dodecahedron]]
| 3&nbsp;2 &#124;<sup>5</sup>/<sub>4</sub>
| t{5’,&nbsp;3}
| {3,&nbsp;<sup>5</sup>/<sub>2</sub>&nbsp;}+&nbsp;2{<sup>5</sup>/<sub>2</sub>,&nbsp;5}
| <sup>2</sup>5/<sub>2</sub>.<sup>2</sup>5/<sub>2</sub>.3
| 12&times;5
| 30&times;3
| 12&times;<sup>2</sup>5/<sub>2</sub><br>20&times;3
|-
| [[Quasitruncated octahedron]]
| 4&nbsp;2 &#124;<sup>3</sup>/<sub>2</sub>
| t{3’,&nbsp;4}
| {4,&nbsp;<sup>4</sup>/<sub>2</sub>}&nbsp;+&nbsp;2{3,&nbsp;4}
| <sup>2</sup>3.<sup>2</sup>3.4
| 6&times;4
| 12&times;3
| 8&times;<sup>2</sup>3<br>6&times;4
|-
| [[Quasitruncated icosahedron]]
| 5&nbsp;2 &#124;<sup>3</sup>/<sub>2</sub>
| t{3’,&nbsp;5}
| {5,&nbsp;<sup>5</sup>/<sub>2</sub>}&nbsp;+&nbsp;2{3,&nbsp;5}
| <sup>2</sup>3.<sup>2</sup>3.5
| 12&times;5
| 30&times;3
| 20&times;<sup>2</sup>3<br>12&times;5
|-
| [[Triquasitruncated octahedron]]
| <sup>3</sup>/<sub>2</sub>&nbsp;2&nbsp;3&#124;
| t<math>\left\{{3'\atop3}\right\}</math>
| [2.4a]
| <sup>2</sup>3.6.4
| 12&times;2
| 12&times;2<br>12&times;1
| 4&times;<sup>2</sup>3<br>4&times;6<br>6&times;4
|-
| [[Pentaquasitruncated icosidodecahedron]]
| 3&nbsp;2&nbsp;<sup>5</sup>/<sub>4</sub>&#124;
| t<math>\left\{{5'\atop3}\right\}</math>
| [2.4d]
| <sup>2</sup>5/<sub>2</sub>.6.4
| 60&times;2
| 60&times;2<br>60&times;1
| 12&times;<sup>2</sup>5/<sub>2</sub><br>20&times;6<br>30&times;4
|-
| [[Triquasitruncated cuboctahedron]]
| <sup>3</sup>/<sub>2</sub>&nbsp;2&nbsp;4&#124;
| t<math>\left\{{3'\atop4}\right\}</math>
| [2.4b]
| <sup>2</sup>3.8.4
| 24&times;2
| 24&times;2<br>24&times;1
| 8&times;<sup>2</sup>3<br>6&times;8<br>12&times;4
|-
| [[Triquasitruncated icosidodecahedron]]
| <sup>3</sup>/<sub>2</sub>&nbsp;2&nbsp;5&#124;
| t<math>\left\{{3'\atop5}\right\}</math>
| [2.4e]
| <sup>2</sup>3.10.4
| 60&times;2
| 60&times;2<br>60&times;1
| 20&times;<sup>2</sup>3<br>12&times;10<br>30&times;4
|-
| [[Quasiquasitruncated icosidodecahedron]]
| <sup>3</sup>/<sub>2</sub>&nbsp;2&nbsp;<sup>5</sup>/<sub>4</sub>&#124;
| t<math>\left\{{3'\atop5'}\right\}</math>
| [2.4f]
| <sup>2</sup>3.<sup>2</sup>5/<sub>2</sub>.4
| 20&times;6
| 60&times;3
| 12&times;<sup>2</sup>5/<sub>2</sub><br>20&times;<sup>2</sup>3<br>30&times;4
|-
| [[Quasiquasitruncated cuboctahedron]]
| <sup>3</sup>/<sub>2</sub>&nbsp;2&nbsp;<sup>4</sup>/<sub>3</sub>&#124;
| t<math>\left\{{3'\atop4'}\right\}</math>
| [2.4c]
| <sup>2</sup>3.<sup>8</sup>/<sub>3</sub>.4
| 24&times;2
| 24&times;2<br>24&times;1
| 6&times;<sup>8</sup>/<sub>3</sub><br>8&times;<sup>2</sup>3<br>12&times;4
|-
| [[Quasirhombicosidodecahedron]]
| <sup>3</sup>/<sub>2</sub>&nbsp;5&nbsp;&#124;2
| r'<math>\left\{{3\atop5}\right\}</math>
| [2.4h]
| 4.3/<sub>2</sub>.4.5
| 20&times;3
| 60&times;2
| 12&times;5<br>20&times;3<br>30&times;4
|-
| [[Quasisnub dodecahedron]]
|-
| [[Quasisnub tetrahedron]]
|-
| [[Quasisnub octahedron]]
|-
| [[Small quasidodecicosidodecahedron]]
|-
| [[Double octahedron]]
|-
| [[Double tetrahemihexahedron]]
|-
| [[Small quasirhombidodecahedron]]
|-
| [[Stella octangula]]
| 3&#124; <sup>4</sup>/<sub>2</sub> 3
|
| [1.4a]
| 3.<sup>4</sup>/<sub>2</sub>.3.<sup>4</sup>/<sub>2</sub>.3.<sup>4</sup>/<sub>2</sub>
| 8
| 24
| 8&times;3<br>6&times;<sup>4</sup>/<sub>2</sub>
|-
| [[Inscribed tetrahedron]]
| 3&#124; <sup>3</sup>/<sub>2</sub> 3
|
| {3,&nbsp;<sup>3</sup>/<sub>2</sub>}&nbsp;+&nbsp;{3,&nbsp;3}
| 3.<sup>3</sup>/<sub>2</sub>.3.<sup>3</sup>/<sub>2</sub>.3.<sup>3</sup>/<sub>2</sub>
| 4
| 6&times;2
| 4&times;3<br>4&times;3
|-
| [[Inscribed octahedron]]
| 4&#124; <sup>3</sup>/<sub>2</sub> 4
|
| {4,&nbsp;<sup>4</sup>/<sub>2</sub>}&nbsp;+&nbsp;{3,&nbsp;4}
| 4.<sup>3</sup>/<sub>2</sub>.4.<sup>3</sup>/<sub>2</sub>.4.<sup>3</sup>/<sub>2</sub>.4.<sup>3</sup>/<sub>2</sub>
| 6
| 12&times;2
| 6&times;4<br>8&times;3
|-
| [[Inscribed icosahedron]]
| 5&#124; <sup>3</sup>/<sub>2</sub> 5
|
| {5,&nbsp;<sup>5</sup>/<sub>2</sub>}&nbsp;+&nbsp;{3,&nbsp;5}
| 5.<sup>3</sup>/<sub>2</sub>.5.<sup>3</sup>/<sub>2</sub>.5.<sup>3</sup>/<sub>2</sub>.5.<sup>3</sup>/<sub>2</sub>.5.<sup>3</sup>/<sub>2</sub>
| 12
| 30&times;2
| 12&times;5<br>20&times;3
|-
| [[Truncated stella octangula]]
| 3 <sup>4</sup>/<sub>2</sub> &#124;3
|
| [1.4b]
| 3.6.<sup>4</sup>/<sub>2</sub>.6
| 24
| 48
| 8&times;3<br>8&times;6<br>6&times;<sup>4</sup>/<sub>2</sub>
|-
| [[Quasiquasitruncated inscribed tetrahedron]]
|-
| [[Quasiquasitruncated stella octangula]]
|-
| [[Quasiquasitruncated small ditrigonal icosidodecahedron]]
|-
| [[Quasiquasitruncated inscribed icosahedron]]
|-
| [[Double stella octangula]]
|-
| [[Small quasicosicosidodecahedron]]
|-
| [[Double tetrahemihexahedron]]
|-
| [[Octaoctahedron]]
|-
| [[Snub inscribed tetrahedron]]<br>''listed as [[Octahedron]]''
|-
| [[Snub stella octangula]]
|-
| [[Snub inscribed octahedron]]<br>''listed as [[Cuboctahedron]]''
|-
| [[Snub inscribed icosahedron]]<br>''listed as [[Icosidodecahedron]]''
|-
| [[Quasisnub stella octangula]]
|-
| [[Quasisnub icosicosidodecahedron]]
|-
| [[Double tetrahemihexahedron]]
|-
| [[Retrosnub stella octangula]]
|-
| [[Inscribed octahedron]]
|-
| [[Quasiquasisnub inscribed octahedron]]<br>''listed as [[Inscribed octahedron]]''
|-
| [[Quasiquasisnub inscribed icosahedron]]<br>''listed as [[Inscribed icosahedron]]''
|-
| [[Inscribed small stellated dodecahedron]]
|-
| [[Inscribed dodecadodecahedron]]
|-
| [[Inscribed icosidodecahedron]]
|-
| [[Inscribed great icosidodecahedron]]
|-
| [[Double inscribed icosahedron]]<br>''listed as [[Inscribed icosahedron]]'
|-
| [[Quasicosidodecadodecahedron]]
|-
| [[Inscribed small stellated dodecahedron]]
|-
| [[Quasisnub icosidodecadodecahedron]]
|-
| [[Great hexahedron]]
| <sup>4</sup>/<sub>2</sub>&#124; 2 4
| {4,<sup>4</sup>/<sub>2</sub>}
| [1.3a]
| 4.4.4.4
| 6
| 12
| 6&times;4
|-
| [[Stellated hexahedron]]
| 4&#124; 2&nbsp;<sup>4</sup>/<sub>2</sub>
| {<sup>4</sup>/<sub>2</sub>,4}
| [1.3d]
| <sup>4</sup>/<sub>2</sub>.<sup>4</sup>/<sub>2</sub>.<sup>4</sup>/<sub>2</sub>.<sup>4</sup>/<sub>2</sub>
| 6
| 12
| 6&times;<sup>4</sup>/<sub>2</sub>
 
|-
| [[Truncated great hexahedron]]
| <sup>4</sup>/<sub>2</sub> 2 &#124;4
| t{4,<sup>4</sup>/<sub>2</sub>}
| [1.3b]
| 8.8.<sup>4</sup>/<sub>2</sub>
| 24
| 36
| 6&times;8<br>6&times;<sup>4</sup>/<sub>2</sub>
|-
| [[Truncated stellated hexahedron]]
| 4 2 &#124;<sup>4</sup>/<sub>2</sub>
| t{<sup>4</sup>/<sub>2</sub>,4}
| [1.3e]<br>3{4,3}
| <sup>2</sup>4.<sup>2</sup>4.4
| 8&times;3
| 12&times;3
| 6&times;<sup>2</sup>4<br>6&times;4
|-
| [[Truncated small stellated dodecahedron]]
| 5 2 &#124;<sup>5</sup>/<sub>2</sub>
| t{<sup>5</sup>/<sub>2</sub>,5}
| 3{5,3}
| <sup>2</sup>5.<sup>2</sup>5.5
| 20&times;3
| 30&times;3
| 12&times;<sup>2</sup>5<br>12&times;5
|-
| [[Truncated great stellated dodecahedron]]
| 3 2 &#124;<sup>5</sup>/<sub>2</sub>
| t{<sup>5</sup>/<sub>2</sub>,3}
| {3,5} + 2{5,<sup>5</sup>/<sub>2</sub>}
| <sup>2</sup>5.<sup>2</sup>5.3
| 12&times;5
| 30&times;3
| 12&times;<sup>2</sup>5<br>20&times;3
|-
| [[Hexahexahedron]]
| 2&#124; 4 <sup>4</sup>/<sub>2</sub>
| <math>\left\{{4\atop4/2}\right\}</math>
| [1.3f]
| 4.<sup>4</sup>/<sub>2</sub>.4.<sup>4</sup>/<sub>2</sub>
| 12
| 24
| 6&times;4<br>6&times;<sup>4</sup>/<sub>2</sub>
|-
| [[Truncated hexahexahedron]]
| 4 2 <sup>4</sup>/<sub>2</sub>&#124;
| t<math>\left\{{4\atop4/2}\right\}</math>
| [1.3g]<br>[2.4m]
| 8.<sup>2</sup>4.4
| 24&times;2
| 24&times;2<br>24&times;1
| 6&times;8<br>6&times;<sup>2</sup>4<br>12&times;4
|-
| [[Truncated dodecadodecahedron]]
| 5 2 <sup>5</sup>/<sub>2</sub>&#124;
| t<math>\left\{{5\atop5/2}\right\}</math>
| [2.4j]
| 10.<sup>2</sup>5.4
| 60&times;2
| 60&times;2<br>60&times;1
| 12&times;10<br>12&times;<sup>2</sup>5<br>30&times;4
|-
| [[Truncated great icosidodecahedron]]
| 3 2 <sup>5</sup>/<sub>2</sub>&#124;
| t<math>\left\{{3\atop5/2}\right\}</math>
| [2.4g]
| 6.<sup>2</sup>5.4
| 60&times;2
| 60&times;2<br>60&times;1
| 20&times;6<br>12&times;<sup>2</sup>5<br>30&times;4
|-
| [[Rhombihexahexahedron]]
| 4 <sup>4</sup>/<sub>2</sub> &#124;2
| r<math>\left\{{4\atop4/2}\right\}</math>
| [1.3i]
| 4.<sup>4</sup>/<sub>2</sub>.4.4
| 24
| 48
| 6&times;4<br>6&times;<sup>4</sup>/<sub>2</sub><br>12&times;4
|-
| [[Great rhombicosidodecahedron]]
| 3 <sup>5</sup>/<sub>2</sub> &#124;2
| r<math>\left\{{3\atop5/2}\right\}</math>
| 4.<sup>5</sup>/<sub>2</sub>.4.3
| 20&times;3
| 60&times;2
| 20&times;3<br>12&times;<sup>5</sup>/<sub>2</sub><br>30&times;4
|-
| [[Snub hexahexahedron]]
| &#124;4 2 <sup>4</sup>/<sub>2</sub>
| s<math>\left\{{4\atop4/2}\right\}</math>
| [1.3j]
| 3.<sup>4</sup>/<sub>2</sub>.3.3.4
| 24
| 60
| 6&times;4<br>6&times;<sup>4</sup>/<sub>2</sub><br>24&times;3
|-
| [[Quasitruncated great hexahedron]]
|-
| [[Quasitruncated great dodecahedron]]
|-
| [[Quasitruncated great icosahedron]]
|-
| [[Quasitruncated hexahexahedron]]
|-
| [[Truncated hexahexahedron]]
|-
| [[Pentaquasitruncated dodecadodecahedron]]
|-
| [[Triquasitruncated great icosidodecahedron]]
|-
| [[Quasiquasitruncated great icosdodecahedron]]
|-
| [[Quasiquasitruncated dodecadodecahedron]]
|-
| [[Quasirhombidodecadodecahedron]]
|-
| [[Small quasisnub icosidodecahedron]]
|-
| [[Rhombihexahedron]]
|-
| [[Great quasidodecicosidodecahedron]]
|-
| [[Great quasirhombidodecahedron]]
|-
| [[Quasirhombicosahedron]]
|-
| [[Double stellated hexahedron]]
|-
| [[Double great dodecahedron]]
|-
| [[Double small stellated dodecahedron]]
|-
| [[Double hexahexahedron]]
|-
| [[Double dodecadodecahedron]]
|-
| [[Double truncated stellated hexahedron]]
|-
| [[Double truncated great dodecahedron]]
|-
| [[Quasiquasitruncated great ditrigonal icosidodecahedron]]
|-
| [[Double quasitruncated small stellated dodecahedron]]
|-
| [[Quasiquasitruncated inscribed small stellated dodecahedron]]
|-
| [[Double Dodecadodecahedron2|Double Dodecadodecahedron 2]]<br>''This differs from the [[double dodecadodecahedron]] in that the pentagrams are two-fold''
|-
| [[Great quasicosicosidodecahedron]]
|-
| [[Triple stella octangula]]
|-
| [[Triple inscribed icosahedron]]
|-
| [[Triple small ditrigonal icosidodecahedron]]
|-
| [[Great icosidodecahedron]]
|-
| [[Great quasisnub icosicosidodecahedron]]
|-
| [[Triple great ditrigonal icosidodecahedron]]
|-
| [[Great retrosnub icosicosidodecahedron]]
|-
| [[Triple inscribed small stellated dodecahedron]]
|-
| [[Great retrosnub dodecicosidodecahedron]]
|}
 
== References ==
* Taylor, P. ''The Simpler? Polyhedra&mdash;being the third part of several comprising The Complete? Polyhedra'' Nattygrafix, 1999
* Taylor, P. ''The Star &amp; Cross Polyhedra&mdash;being the fourth part of several comprising The Complete? Polyhedra'' Nattygrafix, 2000
 
{{expand list|date=August 2012}}
 
[[Category:Polyhedra|Taylor polyhedra]]
 
 
{{polyhedron-stub}}

Latest revision as of 09:32, 20 March 2014

Our hotel is centrally located to all of the Tri Cities' area attractions, from the nearby Fashion Square Mall and Saginaw Art Museum to the open waters of Saginaw Bay.
The reasons Bruce abandons the scene of his crime become clearer over the course of the film, but most of his other decisions making a makeshift home out of his broken down snowplow, attempting a foolishly haphazard raid on a nearby cottage are difficult to grasp. That a haggard Haden Church plays Bruce completely straight only adds to the confusion, you wonder whether Whitewash is a sincere attempt to make a thriller gone desperately wrong.
http://caphsa.org/coach/?key=coach-factory-free-shipping-10
http://caphsa.org/coach/?key=coach-factory-bags-21
http://caphsa.org/coach/?key=coach-factory-outlet-shoes-66
http://caphsa.org/coach/?key=coach-factory-free-shipping-10
http://caphsa.org/coach/?key=what-happened-to-coach-factory-online-73

http://wikis. If you beloved this write-up and you would like to obtain far more data about Cheap Uggs Boots kindly visit the website. ala.org/acrl/index.php/Main_Page
http://wiki.progdesigner.com/index.php?title=How_To_Find_Out_Everything_There_Is_To_Know_About_Bags_Outlet_In_7_Simple_Steps