Line integral convolution: Difference between revisions
Jump to navigation
Jump to search
en>Phil Boswell m convert dodgy URL to ID using AWB |
en>Addbot m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q1826358 |
||
Line 1: | Line 1: | ||
{{Underlinked|date=December 2012}} | |||
In physics, the '''Euler–Heisenberg Lagrangian''' describes the non-linear dynamics of electromagnetic fields in vacuum. It takes into account vacuum polarization to one loop, and it is valid for electromagnetic fields that change slowly compared to the inverse electron mass. It was first obtained by [[Werner Heisenberg]] and [[Hans Heinrich Euler]],<ref>W. Heisenberg and H. Euler, ''Folgerungen aus der Diracschen Theorie des Positrons'' Z. Phys. '''98''', 714 (1936).</ref> and can be expressed as: | |||
:<math>\mathcal{L} =-\mathcal{F} -\frac{1}{8\pi^{2}}\int_{0}^{\infty}\frac{ds}{s^{3}}\exp\left(-m^{2}s\right)\left[(es)^{2}\frac{\operatorname{Re}\cosh\left(es\sqrt{2\left(\mathcal{F} + i\mathcal{G}\right)}\right)}{\operatorname{Im}\cosh\left(es\sqrt{2\left(\mathcal{F} + i\mathcal{G}\right)}\right)}\mathcal{G}-\frac{2}{3}(es)^{2}\mathcal{F} - 1\right]</math> | |||
Here m is the electron mass, e the electron charge, | |||
:<math>\mathcal{F}=\frac{1}{2}\left(\mathbf{B}^2 - \mathbf{E}^2\right)</math>, | |||
and | |||
:<math>\mathcal{G}=\mathbf{E}\cdot\mathbf{B}</math> | |||
In the weak field limit, this becomes: | |||
:<math>\mathcal{L} = \frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right)+\frac{2\alpha^{2}}{45 m^{4}}\left[\left(\mathbf{E}^2 - \mathbf{B}^2\right)^{2} + 7 \left(\mathbf{E}\cdot\mathbf{B}\right)^{2}\right]</math> | |||
==References== | |||
<references/> | |||
{{DEFAULTSORT:Euler-Heisenberg Lagrangian}} | |||
[[Category:Quantum electrodynamics]] | |||
{{electromagnetism-stub}} | |||
{{quantum-stub}} |
Revision as of 07:44, 22 March 2013
In physics, the Euler–Heisenberg Lagrangian describes the non-linear dynamics of electromagnetic fields in vacuum. It takes into account vacuum polarization to one loop, and it is valid for electromagnetic fields that change slowly compared to the inverse electron mass. It was first obtained by Werner Heisenberg and Hans Heinrich Euler,[1] and can be expressed as:
Here m is the electron mass, e the electron charge,
and
In the weak field limit, this becomes:
References
- ↑ W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons Z. Phys. 98, 714 (1936).