Line integral convolution: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Phil Boswell
m convert dodgy URL to ID using AWB
 
en>Addbot
m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q1826358
Line 1: Line 1:
Hello, I'm Hattie, a 25 year old from Store Heddinge, Denmark.<br>My hobbies include (but are not limited to) Book collecting, Musical instruments and watching The Simpsons.<br><br>Review my website: [https://www.facebook.com/AnimasOnlineHackToolCheatsAndroidiOS Animas online cheats]
{{Underlinked|date=December 2012}}
 
In physics, the '''Euler–Heisenberg Lagrangian''' describes the non-linear dynamics of electromagnetic fields in vacuum. It takes into account vacuum polarization to one loop, and it is valid for electromagnetic fields that change slowly compared to the inverse electron mass. It was first obtained by [[Werner Heisenberg]] and [[Hans Heinrich Euler]],<ref>W. Heisenberg and H. Euler, ''Folgerungen aus der Diracschen Theorie des Positrons'' Z. Phys. '''98''', 714 (1936).</ref> and can be expressed as:
 
:<math>\mathcal{L} =-\mathcal{F} -\frac{1}{8\pi^{2}}\int_{0}^{\infty}\frac{ds}{s^{3}}\exp\left(-m^{2}s\right)\left[(es)^{2}\frac{\operatorname{Re}\cosh\left(es\sqrt{2\left(\mathcal{F} + i\mathcal{G}\right)}\right)}{\operatorname{Im}\cosh\left(es\sqrt{2\left(\mathcal{F} + i\mathcal{G}\right)}\right)}\mathcal{G}-\frac{2}{3}(es)^{2}\mathcal{F} - 1\right]</math>
 
Here m is the electron mass, e the electron charge,
 
:<math>\mathcal{F}=\frac{1}{2}\left(\mathbf{B}^2 - \mathbf{E}^2\right)</math>,
 
and
 
:<math>\mathcal{G}=\mathbf{E}\cdot\mathbf{B}</math>
 
In the weak field limit, this becomes:
 
:<math>\mathcal{L} = \frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right)+\frac{2\alpha^{2}}{45 m^{4}}\left[\left(\mathbf{E}^2 - \mathbf{B}^2\right)^{2} + 7 \left(\mathbf{E}\cdot\mathbf{B}\right)^{2}\right]</math>
 
==References==
<references/>
 
{{DEFAULTSORT:Euler-Heisenberg Lagrangian}}
[[Category:Quantum electrodynamics]]
 
 
{{electromagnetism-stub}}
{{quantum-stub}}

Revision as of 07:44, 22 March 2013

Template:Underlinked

In physics, the Euler–Heisenberg Lagrangian describes the non-linear dynamics of electromagnetic fields in vacuum. It takes into account vacuum polarization to one loop, and it is valid for electromagnetic fields that change slowly compared to the inverse electron mass. It was first obtained by Werner Heisenberg and Hans Heinrich Euler,[1] and can be expressed as:

=18π20dss3exp(m2s)[(es)2cosh(es2(+i𝒢))cosh(es2(+i𝒢))𝒢23(es)21]

Here m is the electron mass, e the electron charge,

=12(B2E2),

and

𝒢=EB

In the weak field limit, this becomes:

=12(E2B2)+2α245m4[(E2B2)2+7(EB)2]

References

  1. W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons Z. Phys. 98, 714 (1936).


Template:Electromagnetism-stub Template:Quantum-stub