3D reconstruction from multiple images: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Codename Lisa
This goes to "See also" section at the bottom.
en>Wavelength
inserting 1 hyphen: —> "three-dimensional"—wikt:three-dimensional
Line 1: Line 1:
{{Infobox probability distribution
I'm a 33 years old and study at the college (Comparative Politics).<br>In my spare time I learn Russian. I have been twicethere and look forward to returning anytime soon. I like to read, preferably on my kindle. I really love to watch Sons of Anarchy and Doctor Who as well as documentaries about anything geological. I like Reading.<br><br>Check out my web-site - [http://www.sexytgps.net turk porno |]
| name      = Delaporte
| type      = discrete
| pdf_image  = [[File:DelaportePMF.svg|325px|Plot of the PMF for various Delaporte distributions.]]<br /> When <math>\alpha</math> and <math>\beta</math> are 0, the distribution is the Poisson.<br />When <math>\lambda</math> is 0, the distribution is the negative binomial.
| cdf_image  = [[File:DelaporteCDF.svg|325px|Plot of the PMF for various Delaporte distributions.]]<br /> When <math>\alpha</math> and <math>\beta</math> are 0, the distribution is the Poisson.<br />When <math>\lambda</math> is 0, the distribution is the negative binomial.
| notation  =
| parameters = <math>\lambda > 0</math> (fixed mean)
<math>\alpha, \beta > 0</math> (parameters of variable mean)
| support    = <math>k \in \{0, 1, 2, \ldots\}</math>
| pdf        = <math>\sum_{i=0}^k\frac{\Gamma(\alpha + i)\beta^i\lambda^{k-i}e^{-\lambda}}{\Gamma(\alpha)i!(1+\beta)^{\alpha+i}(k-i)!}</math>
| cdf        = <math>\sum_{j=0}^k\sum_{i=0}^j\frac{\Gamma(\alpha + i)\beta^i\lambda^{j-i}e^{-\lambda}}{\Gamma(\alpha)i!(1+\beta)^{\alpha+i}(j-i)!}</math>
| mean      = <math>\lambda + \alpha\beta</math>
| median    =
| mode      = <math>\begin{cases}z, z+1 & \{z \in \mathbb{Z}\}:\; z = (\alpha-1)\beta+\lambda\\ \lfloor z \rfloor & \textrm{otherwise}\end{cases}</math>
| variance  = <math>\lambda + \alpha\beta(1+\beta)</math>
| skewness  = See [[#Properties]]
| kurtosis  = See [[#Properties]]
| entropy    =
| mgf        =
| cf        =
| pgf        =
| fisher    =
}}
The '''Delaporte distribution''' is a [[discrete probability distribution]] that has received attention in [[actuarial science]].<ref name = "EAS">{{cite encyclopedia
| last = Panjer
| first = Harry H.
| editor1-last = Teugels
| editor1-first = Jozef L.
| editor2-first = Bjørn
| editor2-last = Sundt
| encyclopedia = Encyclopedia of Actuarial Science
| title = Discrete Parametric Distributions
| year = 2006
| publisher = [[John Wiley & Sons]]
| isbn = 978-0-470-01250-5
| doi = 10.1002/9780470012505.tad027
}}
</ref><ref name = "UDD"/> It can be defined using the [[convolution]] of a [[negative binomial distribution]] with a [[Poisson distribution]].<ref name = "UDD">{{cite book
| last1        = Johnson
| first1        = Norman Lloyd
| author1-link  = Norman Lloyd Johnson
| last2        = Kemp
| first2        = Adrienne W.
| last3        = Kotz
| first3        = Samuel
| author3-link  = Samuel Kotz
| title        = Univariate discrete distributions
| edition      = Third
| year          = 2005
| publisher    = [[John Wiley & Sons]]
| isbn          = 978-0-471-27246-5
| pages          = 241–242
}}
</ref> Just as the [[negative binomial distribution]] can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a [[gamma distribution]], the Delaporte distribution can be viewed as a [[compound distribution]] based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the <math>\lambda</math> parameter, and a gamma-distributed variable component, which has the <math>\alpha</math> and <math>\beta</math> parameters.<ref name = "Vose">{{cite book
| last1        = Vose
| first1        = David
| title        = Risk analysis: a quantitative guide
| edition      = Third, illustrated
| year          = 2008
| publisher    = [[John Wiley & Sons]]
| isbn          = 978-0-470-51284-5
| lccn          = 2007041696
| pages        = 618–619
}}
</ref> The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959,<ref name = "DP">{{cite journal
| last1 = Delaporte
| first1 = Pierre J.
| year = 1960
| month =
| title = Quelques problèmes de statistiques mathématiques poses par l’Assurance Automobile et le Bonus pour non sinistre
| trans_title = Some problems of mathematical statistics as related to automobile insurance and no-claims bonus
| journal = Bulletin Trimestriel de l'Institut des Actuaires Français
| volume = 227
| pages = 87–102
| language = French
}}
</ref> although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders,<ref name = "Luders">{{cite journal
| last1 = von Lüders
| first1 = Rolf
| year = 1934
| title = Die Statistik der seltenen Ereignisse
| trans_title = The statistics of rare events
| journal = [[Biometrika]]
| volume = 26
| pages = 108–128
| language = German
| doi=10.1093/biomet/26.1-2.108
| jstor=2332055
}}
</ref> where it was called the Formel II distribution.<ref name = "UDD" />
 
==Properties==
The [[skewness]] of the Delaporte distribution is:
 
<math>
\frac{\lambda + \alpha\beta(1+3\beta+2\beta^2)}{\left(\lambda + \alpha\beta(1+\beta)\right)^{\frac{3}{2}}}
</math>
 
The [[kurtosis|excess kurtosis]] of the distribution is:
 
<math>
\frac{\lambda+3\lambda^2+\alpha\beta(1+6\lambda+6\lambda\beta+7\beta+12\beta^2+6\beta^3+3\alpha\beta+6\alpha\beta^2+3\alpha\beta^3)}{\left(\lambda + \alpha\beta(1+\beta)\right)^2}
</math>
 
==References==
{{reflist}}
 
==Further reading==
*{{cite journal|
last1=Murat |first1= M.
|last2=Szynal |first2= D.
|title= On moments of counting distributions satisfying the k'th-order recursion and their compound distributions
|journal=Journal of Mathematical Sciences
|year=1998
|pages=4038&ndash;4043
|volume= 92 |issue= 4
|doi= 10.1007/BF02432340  }}
 
==External links==
*[http://vosesoftware.com/ModelRiskHelp/index.htm#Distributions/Discrete_distributions/Delaporte_distribution.htm Delaporte distribution] at Vose Software. Details of derivation.
 
{{ProbDistributions|discrete-infinite}}
{{Common univariate probability distributions|state=collapsed}}
 
{{DEFAULTSORT:Delaporte distribution}}
[[Category:Discrete distributions]]
[[Category:Compound distributions]]
[[Category:Probability distributions]]

Revision as of 21:34, 21 February 2014

I'm a 33 years old and study at the college (Comparative Politics).
In my spare time I learn Russian. I have been twicethere and look forward to returning anytime soon. I like to read, preferably on my kindle. I really love to watch Sons of Anarchy and Doctor Who as well as documentaries about anything geological. I like Reading.

Check out my web-site - turk porno |