|
|
Line 1: |
Line 1: |
| The decimal value of the [[natural logarithm]] of [[2 (number)|2]] {{OEIS|A002162}}
| | Wholesale knife distributors are aggressive promoting their wholesale knives and wholesale pocket knives – identical to some other enterprise. The wholesale knife distributors that promote wholesale knives and pocket knives to giant searching, tenting and other out of doors retail shops and retail chains cater solely to the big guys. That is their aggressive niche. Other wholesale knife distributors are effectively conscious of this – and they want their area of interest identical to everyone else. A wholesale knife distributor that dropships will sell wholesale knives and [http://www.harrietoneilllaw.com/node/589547 pocket knives] in small quantities, and will even supply direct delivery from the wholesale distributors location to your customer's deliverable handle.<br><br>The Butterfly Knife , also called a gravity knife or balisong is typically unlawful. They're designed to be deployed quickly with a flipping action of the wrist, producing a slashing action. They are a folding knife that has two handles that rotate around its tang. They are opened by centrifugal drive. Both the switchblade and the butterfly knife have an evil or threatening fame because of their slashing action. The tips can break off or the blade chip if a ceramic blade Pocket knife is dropped on the ground and you can not use them to pry with.<br><br>Topic to your usage, Ceramic Blade Pocket Knives can supply a light-weight, stronger knife that does not need to be sharpened as typically, is not going to pass on a metallic taste to meals and will not rust. Nonetheless, you need to take particular care of ceramic blade pocket knives , since they'll chip or break plus they cost more than traditional solid steel pocket knives do. Al Warren - The well-known knife maker Mr. Warren workouts the finest methods and products to design his merchandise that can endure the check of time and sturdiness that will help you to carry out your duties that you simply anticipate the outcomes.<br><br>There are lots of numbers of various knife makers who produces glorious design of knives for the via out nationwide retailers or web prospects. They only focused to the customers demand. Al Warren is one of the best instance for the choosy knife selection which you'll get a help from this text to make a high quality choice. Make sure that what is important to you within the knife purchase and in your decision. Hopefully this list has been helpful and can help you make a knowledgeable resolution. Some of the name brands that made the honorable point out, however not the highest 3 are Cold Metal, Maxam, Spyderco, Remington, Fury and Buck knives<br><br>Perhaps you’re pondering that it’s not so vital. A sharpening angle doesn't really matter as long as you can make it sharp. Enable me to reply freely. Don’t think that way. Take those ideas proper out of your head right now. The sharpening angle is monumentally vital. Even had been you to attain [http://www.thebestpocketknifereviews.com/best-swiss-army-knife-choosing-the-best-models/ Www.Thebestpocketknifereviews.Com] sharpness with an incorrect angle, you will be sharpening once more earlier than you already know it. It just will not final. [http://Www.danielasandoni.it/content/best-swiss-army-knives Compare] the angles of different types of knives to one another. Inspect their angles fastidiously and think of how every is meant to be used. You’ll see it plainly. It actually does matter.<br><br>Our test subjects had been average-sized thirteen year-old boys. The wristband match comfortably on the wrist for both boys. After a few hours, one boy complained it was too unfastened and finally made his own gap additional up the band along with his pocket knife. Each boys said they observed the yellow plastic grommet however neither were bothered by it. The wristband match snugly on the boys' ankles and in both instances, came unfastened while they performed within the lake. Both boys said the band felt no different than any other gel bracelet they're accustomed to wearing. "It just smelled better," one boy declared. |
| is approximately
| |
| :<math>\ln 2 \approx 0.69314718055...</math>
| |
| as shown in the first line of the table below.
| |
| The logarithm in other bases is obtained with the [[Logarithmic identities|formula]] | |
| :<math>\log_b 2 = \frac{\ln 2}{\ln b}.</math>
| |
| The [[Briggsian logarithm|common logarithm]] in particular is ({{OEIS2C|A007524}})
| |
| :<math>\log_{10} 2 \approx 0.301029995663981195.</math>
| |
| The inverse of this number is the [[binary logarithm]] of 10:
| |
| :<math> \log_2 10=1/\log_{10} 2 \approx 3.321928095</math> ({{OEIS2C|A020862}}).
| |
| {{Table
| |
| |type=class="wikitable"
| |
| |hdrs=number!!approximate natural logarithm!![[OEIS]]
| |
| |row1=[[2 (number)|2]] {{!!}} 0.693147180559945309417232121458 {{!!}} {{OEIS link|A002162}}
| |
| |row2=[[3 (number)|3]]{{!!}}1.09861228866810969139524523692{{!!}} {{OEIS link|A002391}}
| |
| |row3=[[4 (number)|4]]{{!!}}1.38629436111989061883446424292{{!!}} {{OEIS link|A016627}}
| |
| |row4=[[5 (number)|5]]{{!!}}1.60943791243410037460075933323{{!!}} {{OEIS link|A016628}}
| |
| |row5=[[6 (number)|6]]{{!!}}1.79175946922805500081247735838{{!!}} {{OEIS link|A016629}}
| |
| |row6=[[7 (number)|7]]{{!!}}1.94591014905531330510535274344{{!!}} {{OEIS link|A016630}}
| |
| |row7=[[8 (number)|8]]{{!!}}2.07944154167983592825169636437{{!!}} {{OEIS link|A016631}}
| |
| |row8=[[9 (number)|9]]{{!!}}2.19722457733621938279049047384{{!!}} {{OEIS link|A016632}}
| |
| |row9=[[10 (number)|10]]{{!!}}2.30258509299404568401799145468{{!!}} {{OEIS link|A002392}}
| |
| }}
| |
| | |
| ==Series representations==
| |
| | |
| :<math>\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} = \sum_{n=0}^\infty \frac{1}{(2n+1)(2n+2)} = \ln 2.</math> | |
| | |
| :<math>\sum_{n=1}^\infty \frac{(-1)^n}{(n+1)(n+2)} = 2\ln 2 -1.</math>
| |
| | |
| :<math>\sum_{n=1}^\infty \frac{1}{n(4n^2-1)} = 2\ln 2 -1.</math>
| |
| | |
| :<math>\sum_{n=1}^\infty \frac{(-1)^n}{n(4n^2-1)} = \ln 2 -1.</math>
| |
| | |
| :<math>\sum_{n=1}^\infty \frac{(-1)^n}{n(9n^2-1)} = 2\ln 2 -\frac{3}{2}.</math>
| |
| | |
| :<math>\sum_{n=2}^\infty \frac{1}{2^n}[\zeta(n)-1] = \ln 2 -\frac{1}{2}.</math>
| |
| | |
| :<math>\sum_{n=1}^\infty \frac{1}{2n+1}[\zeta(n)-1] = 1-\gamma-\frac{1}{2}\ln 2.</math>
| |
| | |
| :<math>\sum_{n=1}^\infty \frac{1}{2^{2n}(2n+1)}\zeta(2n) = \frac{1}{2}(1-\ln 2).</math>
| |
| | |
| :<math>\ln 2 = \sum_{k\ge 1} \frac{1}{k2^k}.</math>
| |
| | |
| :<math>\ln 2 = \sum_{k\ge 1}\left(\frac{1}{3^k}+\frac{1}{4^k}\right)\frac{1}{k}.</math>
| |
| | |
| :<math>\ln 2 = \frac{2}{3}+\sum_{k\ge 1}\left(\frac{1}{2k}+\frac{1}{4k+1}+\frac{1}{8k+4}+\frac{1}{16k+12}\right)\frac{1}{16^k}.</math>
| |
| | |
| :<math>\ln 2 = \frac{2}{3} \sum_{k\ge 0} \frac{1}{(2k+1)9^k}.</math>
| |
| | |
| (<math>\gamma</math> is the [[Euler constant|Euler–Mascheroni constant]]
| |
| and <math>\zeta</math> [[Riemann zeta function|Riemann's zeta function]]).
| |
| | |
| Some [[Bailey–Borwein–Plouffe formula|Bailey–Borwein–Plouffe (BBP)-type representations]] fall also into this category.
| |
| | |
| ==Representation as integrals==
| |
| | |
| :<math>\int_0^1 \frac{dx}{1+x} = \ln 2,\text{ or, equivalently, }\int_1^2 \frac{dx}{x} = \ln 2.</math>
| |
| | |
| :<math>\int_1^\infty \frac{dx}{(1+x^2)(1+x)^2} = \frac{1}{4}(1-\ln 2).</math>
| |
| | |
| :<math>\int_0^\infty \frac{dx}{1+e^{nx}} = \frac{1}{n}\ln 2;
| |
| \int_0^\infty \frac{dx}{3+e^{nx}} = \frac{2}{3n}\ln 2.</math>
| |
| | |
| :<math>\int_0^\infty \frac{1}{e^x-1}-\frac{2}{e^{2x}-1}\,dx=\ln 2.</math>
| |
| | |
| :<math>\int_0^\infty e^{-x}\frac{1-e^{-x}}{x} \, dx= \ln 2.</math>
| |
| | |
| :<math>\int_0^1 \ln\frac{x^2-1}{x\ln x}dx=-1+\ln 2+\gamma.</math>
| |
| | |
| :<math>\int_0^{\pi/3} \tan x \, dx=2\int_0^{\pi/4} \tan x \, dx=\ln 2.</math>
| |
| | |
| :<math>\int_{-\pi/4}^{\pi/4} \ln(\sin x+\cos x)\,dx=-\frac{\pi}{4}\ln 2.</math>
| |
| | |
| :<math>\int_0^1 x^2\ln(1+x)\,dx=\frac{2}{3}\ln 2-\frac{5}{18}.</math>
| |
| | |
| :<math>\int_0^1 x\ln(1+x)\ln(1-x)\,dx=\frac{1}{4}-\ln 2.</math>
| |
| | |
| :<math>\int_0^1 x^3\ln(1+x)\ln(1-x)\,dx=\frac{13}{96}-\frac{2}{3}\ln 2.</math>
| |
| | |
| :<math>\int_0^1 \frac{\ln x}{(1+x)^2}\,dx = -\ln 2.</math>
| |
| | |
| :<math>\int_0^1 \frac{\ln(1+x)-x}{x^2}\,dx=1-2\ln2.</math>
| |
| | |
| :<math>\int_0^1 \frac{dx}{x(1-\ln x)(1-2\ln x)} = \ln 2.</math>
| |
| | |
| :<math>\int_1^\infty \frac{\ln\ln x}{x^3}\,dx = -\frac{1}{2}(\gamma+\ln 2).</math>
| |
| | |
| (<math>\gamma</math> is the [[Euler constant|Euler–Mascheroni constant]]).
| |
| | |
| ==Other representations==
| |
| The Pierce expansion is {{OEIS2C|A091846}}
| |
| :<math> \ln 2 = \frac{1}{1} -\frac{1}{1\cdot 3}+\frac{1}{1\cdot 3\cdot 12} -\cdots. </math>
| |
| The [[Engel expansion]] is {{OEIS2C|A059180}}
| |
| :<math> \ln 2 = \frac{1}{2} + \frac{1}{2\cdot 3} + \frac{1}{2\cdot 3\cdot 7} + \frac{1}{2\cdot 3\cdot 7\cdot 9}+\cdots. </math>
| |
| The cotangent expansion is {{OEIS2C|A081785}} | |
| :<math> \ln 2 = \cot (\operatorname{arccot} 0 -\operatorname{arccot} 1 + \operatorname{arccot} 5 - \operatorname{arccot} 55 + \operatorname{arccot} 14187 -\cdots). </math>
| |
| As an infinite sum of fractions:<ref>"The Penguin's Dictionary of Curious and Interesting Numbers" by David Wells, page 29.</ref>
| |
| :<math> \ln 2 = \frac{1}{1} -\frac{1}{2} +\frac{1}{3} -\frac{1}{4} +\frac{1}{5} -\cdots. </math>
| |
| This [[generalized continued fraction]]:
| |
| :<math> \ln 2 = \left[ 0;1,2,3,1,5,\frac{2}{3},7,\frac{1}{2},9,\frac{2}{5},...,2k-1,\frac{2}{k},...\right] </math>,<ref>[http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EM/expmath/volumes/13/13.3/BorweinCrandallFee.pdf On the Ramanujan AGM Fraction, I: The Real-Parameter Case. Experimental Mathematics, Vol. 13 (2004), No. 3, pages 278,280.]</ref>
| |
| :also expressible as
| |
| :<math> \ln 2 = \cfrac{1} {1+\cfrac{1} {2+\cfrac{1} {3+\cfrac{2} {2+\cfrac{2} {5+\cfrac{3} {2+\cfrac{3} {7+\cfrac{4} {2+\ddots}}}}}}}}
| |
| = \cfrac{2} {3-\cfrac{1^2} {9-\cfrac{2^2} {15-\cfrac{3^2} {21-\ddots}}}} </math>
| |
| | |
| ==Bootstrapping other logarithms==
| |
| Given a value of <math>\ln 2</math>, a scheme of computing the
| |
| logarithms of other [[integer]]s is to tabulate the logarithms of the
| |
| [[prime number]]s and in the next layer the logarithms of the [[Composite number|composite]]
| |
| numbers <math>c</math> based on their [[Table of prime factors|factorizations]]
| |
| :<math>c=2^i3^j5^k7^\ell\cdots\rightarrow \ln c=i\ln 2+j\ln 3+k\ln 5+\ell\ln 7+\cdots</math>
| |
| | |
| Apart from the logarithms of 2, 3, 5 and 7 shown above, this employs
| |
| {{Table
| |
| |type=class="wikitable sortabel"
| |
| |hdrs=prime!!approximate natural logarithm!![[OEIS]]
| |
| |row1=[[11 (number)|11]] {{!!}} 2.39789527279837054406194357797 {{!!}} {{OEIS link|A016634}}
| |
| |row2=[[13 (number)|13]] {{!!}} 2.56494935746153673605348744157 {{!!}} {{OEIS link|A016636}}
| |
| |row3=[[17 (number)|17]] {{!!}} 2.83321334405621608024953461787 {{!!}} {{OEIS link|A016640}}
| |
| |row4=[[19 (number)|19]] {{!!}} 2.94443897916644046000902743189 {{!!}} {{OEIS link|A016642}}
| |
| |row5=[[23 (number)|23]] {{!!}} 3.13549421592914969080675283181 {{!!}} {{OEIS link|A016646}}
| |
| |row6=[[29 (number)|29]] {{!!}} 3.36729582998647402718327203236 {{!!}} {{OEIS link|A016652}}
| |
| |row7=[[31 (number)|31]] {{!!}} 3.43398720448514624592916432454 {{!!}} {{OEIS link|A016654}}
| |
| |row8=[[37 (number)|37]] {{!!}} 3.61091791264422444436809567103 {{!!}} {{OEIS link|A016660}}
| |
| |row9=[[41 (number)|41]] {{!!}} 3.71357206670430780386676337304 {{!!}} {{OEIS link|A016664}}
| |
| |row10=[[43 (number)|43]] {{!!}} 3.76120011569356242347284251335 {{!!}} {{OEIS link|A016666}}
| |
| |row11=[[47 (number)|47]] {{!!}} 3.85014760171005858682095066977 {{!!}} {{OEIS link|A016670}}
| |
| |row12=[[53 (number)|53]] {{!!}} 3.97029191355212183414446913903 {{!!}} {{OEIS link|A016676}}
| |
| |row13=[[59 (number)|59]] {{!!}} 4.07753744390571945061605037372 {{!!}} {{OEIS link|A016682}}
| |
| |row14=[[61 (number)|61]] {{!!}} 4.11087386417331124875138910343 {{!!}} {{OEIS link|A016684}}
| |
| |row15=[[67 (number)|67]] {{!!}} 4.20469261939096605967007199636 {{!!}} {{OEIS link|A016690}}
| |
| |row16=[[71 (number)|71]] {{!!}} 4.26267987704131542132945453251 {{!!}} {{OEIS link|A016694}}
| |
| |row17=[[73 (number)|73]] {{!!}} 4.29045944114839112909210885744 {{!!}} {{OEIS link|A016696}}
| |
| |row18=[[79 (number)|79]] {{!!}} 4.36944785246702149417294554148 {{!!}} {{OEIS link|A016702}}
| |
| |row19=[[83 (number)|83]] {{!!}} 4.41884060779659792347547222329 {{!!}} {{OEIS link|A016706}}
| |
| |row20=[[89 (number)|89]] {{!!}} 4.48863636973213983831781554067 {{!!}} {{OEIS link|A016712}}
| |
| |row21=[[97 (number)|97]] {{!!}} 4.57471097850338282211672162170 {{!!}} {{OEIS link|A016720}}
| |
| }}
| |
| | |
| In a third layer, the logarithms of rational numbers <math>r=a/b</math>
| |
| are computed with <math>\ln r = \ln a -\ln b</math>, and logarithms of roots
| |
| via <math>\ln \sqrt[n]{c} = \frac{1}{n}\ln c</math>.
| |
| | |
| The logarithm of [[2 (number)|2]] is useful in the sense that the powers
| |
| of 2 are rather densely distributed; finding powers <math>2^i</math>
| |
| close to powers <math>b^j</math> of other numbers <math>b</math> is
| |
| comparatively easy, and series representations of <math>\ln b</math>
| |
| are found by coupling <math>2</math> to <math>b</math>
| |
| with [[Logarithmic identities|logarithmic conversions]].
| |
| | |
| ===Example===
| |
| If <math>p^s=q^t+d</math> with some small <math>d</math>,
| |
| then <math>p^s/q^t=1+d/q^t</math> and therefore
| |
| :<math> s\ln p-t\ln q = \ln\left(1+\frac{d}{q^t}\right) =
| |
| \sum_{m=1}^\infty (-1)^{m+1}\frac{(d/q^t)^m}{m}.
| |
| </math>
| |
| Selecting <math>q=2</math>
| |
| represents <math>\ln p</math> by <math>\ln 2</math> and a series of
| |
| a parameter <math>d/q^t</math> that one wishes to keep small for quick convergence. Taking <math>3^2=2^3+1</math>, for example, generates
| |
| :<math> 2\ln 3 = 3\ln 2-\sum_{k\ge 1}\frac{(-1)^k}{k8^k}.</math>
| |
| This is actually the third line in the following table of
| |
| expansions of this type:
| |
| <!--
| |
| :<math> 5\ln 3 = 8\ln 2-\sum_{k\ge 1}\frac{1}{k}(\frac{13}{256})^k.</math>
| |
| :<math> 6\ln 5 = 14\ln 2-\sum_{k\ge 1}\frac{1}{k}(\frac{759}{16384})^k.</math>
| |
| :<math> \ln 7 = 3\ln 2-\sum_{k\ge 1}\frac{1}{k8^k}.</math>
| |
| :<math> 5\ln 7 = 14\ln 2-\sum_{k\ge 1}\frac{(-1)^k}{k}(\frac{423}{16384})^k.</math>
| |
| :<math> \ln 17 = 4\ln 2-\sum_{k\ge 1}\frac{(-1)^k}{k16^k}.</math>
| |
| --> | |
| {{Table
| |
| |type=class="wikitable sortable"
| |
| |hdrs=s!!p!!t!!q!!d/q<sup>''t''</sup>
| |
| |row1=1{{!!}}3 {{!!}} 1 {{!!}} 2 {{!!}} 1 / 2 = 0.50000000...
| |
| |row2=1{{!!}}3 {{!!}} 2 {{!!}} 2 {{!!}} −1 / 4 = −0.25000000...
| |
| |row3=2{{!!}}3 {{!!}} 3 {{!!}} 2 {{!!}} 1 / 8 = 0.12500000...
| |
| |row4=5{{!!}}3 {{!!}} 8 {{!!}} 2 {{!!}} −13 / 256 = −0.05078125...
| |
| |row5=12{{!!}}3 {{!!}} 19 {{!!}} 2 {{!!}} 7153 / 524288 = 0.01364326...
| |
| |row6=1{{!!}}5 {{!!}} 2 {{!!}} 2 {{!!}} 1 / 4 = 0.25000000...
| |
| |row7=3{{!!}}5 {{!!}} 7 {{!!}} 2 {{!!}} −3 / 128 = −0.02343750...
| |
| |row8=1{{!!}}7 {{!!}} 2 {{!!}} 2 {{!!}} 3 / 4 = 0.75000000...
| |
| |row9=1{{!!}}7 {{!!}} 3 {{!!}} 2 {{!!}} −1 / 8 = −0.12500000...
| |
| |row10=5{{!!}}7 {{!!}} 14 {{!!}} 2 {{!!}} 423 / 16384 = 0.02581787...
| |
| |row11=1{{!!}}11 {{!!}} 3 {{!!}} 2 {{!!}} 3 / 8 = 0.37500000...
| |
| |row12=2{{!!}}11 {{!!}} 7 {{!!}} 2 {{!!}} −7 / 128 = −0.05468750...
| |
| |row13=11{{!!}}11 {{!!}} 38 {{!!}} 2 {{!!}} 10433763667 / 274877906944 = 0.03795781...
| |
| |row14=1{{!!}}13 {{!!}} 3 {{!!}} 2 {{!!}} 5 / 8 = 0.62500000...
| |
| |row15=1{{!!}}13 {{!!}} 4 {{!!}} 2 {{!!}} −3 / 16 = −0.18750000...
| |
| |row16=3{{!!}}13 {{!!}} 11 {{!!}} 2 {{!!}} 149 / 2048 = 0.07275391...
| |
| |row17=7{{!!}}13 {{!!}} 26 {{!!}} 2 {{!!}} −4360347 / 67108864 = −0.06497423...
| |
| |row18=10{{!!}}13 {{!!}} 37 {{!!}} 2 {{!!}} 419538377 / 137438953472 = 0.00305254...
| |
| |row19=1{{!!}}17 {{!!}} 4 {{!!}} 2 {{!!}} 1 / 16 = 0.06250000...
| |
| |row20=1{{!!}}19 {{!!}} 4 {{!!}} 2 {{!!}} 3 / 16 = 0.18750000...
| |
| |row21=4{{!!}}19 {{!!}} 17 {{!!}} 2 {{!!}} −751 / 131072 = −0.00572968...
| |
| |row22=1{{!!}}23 {{!!}} 4 {{!!}} 2 {{!!}} 7 / 16 = 0.43750000...
| |
| |row23=1{{!!}}23 {{!!}} 5 {{!!}} 2 {{!!}} −9 / 32 = −0.28125000...
| |
| |row24=2{{!!}}23 {{!!}} 9 {{!!}} 2 {{!!}} 17 / 512 = 0.03320312...
| |
| |row25=1{{!!}}29 {{!!}} 4 {{!!}} 2 {{!!}} 13 / 16 = 0.81250000...
| |
| |row26=1{{!!}}29 {{!!}} 5 {{!!}} 2 {{!!}} −3 / 32 = −0.09375000...
| |
| |row27=7{{!!}}29 {{!!}} 34 {{!!}} 2 {{!!}} 70007125 / 17179869184 = 0.00407495...
| |
| |row28=1{{!!}}31 {{!!}} 5 {{!!}} 2 {{!!}} −1 / 32 = −0.03125000...
| |
| |row29=1{{!!}}37 {{!!}} 5 {{!!}} 2 {{!!}} 5 / 32 = 0.15625000...
| |
| |row30=4{{!!}}37 {{!!}} 21 {{!!}} 2 {{!!}} −222991 / 2097152 = −0.10633039...
| |
| |row31=5{{!!}}37 {{!!}} 26 {{!!}} 2 {{!!}} 2235093 / 67108864 = 0.03330548...
| |
| |row32=1{{!!}}41 {{!!}} 5 {{!!}} 2 {{!!}} 9 / 32 = 0.28125000...
| |
| |row33=2{{!!}}41 {{!!}} 11 {{!!}} 2 {{!!}} −367 / 2048 = −0.17919922...
| |
| |row34=3{{!!}}41 {{!!}} 16 {{!!}} 2 {{!!}} 3385 / 65536 = 0.05165100...
| |
| |row35=1{{!!}}43 {{!!}} 5 {{!!}} 2 {{!!}} 11 / 32 = 0.34375000...
| |
| |row36=2{{!!}}43 {{!!}} 11 {{!!}} 2 {{!!}} −199 / 2048 = −0.09716797...
| |
| |row37=5{{!!}}43 {{!!}} 27 {{!!}} 2 {{!!}} 12790715 / 134217728 = 0.09529825...
| |
| |row38=7{{!!}}43 {{!!}} 38 {{!!}} 2 {{!!}} −3059295837 / 274877906944 = −0.01112965...
| |
| | |
| }}
| |
| | |
| Starting from the natural logarithm of <math>q=10</math> one might use these parameters:
| |
| {{Table
| |
| |type=class="wikitable sortable"
| |
| |hdrs=s!!p!!t!!q!!d/q<sup>''t''</sup>
| |
| |row1=10{{!!}}2 {{!!}} 3 {{!!}} 10 {{!!}} 3 / 125 = 0.02400000...
| |
| |row2=21{{!!}}3 {{!!}} 10 {{!!}} 10 {{!!}} 460353203 / 10000000000 = 0.04603532...
| |
| |row3=3{{!!}}5 {{!!}} 2 {{!!}} 10 {{!!}} 1 / 4 = 0.25000000...
| |
| |row4=10{{!!}}5 {{!!}} 7 {{!!}} 10 {{!!}} −3 / 128 = −0.02343750...
| |
| |row5=6{{!!}}7 {{!!}} 5 {{!!}} 10 {{!!}} 17649 / 100000 = 0.17649000...
| |
| |row6=13{{!!}}7 {{!!}} 11 {{!!}} 10 {{!!}} −3110989593 / 100000000000 = −0.03110990...
| |
| |row7=1{{!!}}11 {{!!}} 1 {{!!}} 10 {{!!}} 1 / 10 = 0.10000000...
| |
| |row8=1{{!!}}13 {{!!}} 1 {{!!}} 10 {{!!}} 3 / 10 = 0.30000000...
| |
| |row9=8{{!!}}13 {{!!}} 9 {{!!}} 10 {{!!}} −184269279 / 1000000000 = −0.18426928...
| |
| |row10=9{{!!}}13 {{!!}} 10 {{!!}} 10 {{!!}} 604499373 / 10000000000 = 0.06044994...
| |
| |row11=1{{!!}}17 {{!!}} 1 {{!!}} 10 {{!!}} 7 / 10 = 0.70000000...
| |
| |row12=4{{!!}}17 {{!!}} 5 {{!!}} 10 {{!!}} −16479 / 100000 = −0.16479000...
| |
| |row13=9{{!!}}17 {{!!}} 11 {{!!}} 10 {{!!}} 18587876497 / 100000000000 = 0.18587876...
| |
| |row14=3{{!!}}19 {{!!}} 4 {{!!}} 10 {{!!}} −3141 / 10000 = −0.31410000...
| |
| |row15=4{{!!}}19 {{!!}} 5 {{!!}} 10 {{!!}} 30321 / 100000 = 0.30321000...
| |
| |row16=7{{!!}}19 {{!!}} 9 {{!!}} 10 {{!!}} −106128261 / 1000000000 = −0.10612826...
| |
| |row17=2{{!!}}23 {{!!}} 3 {{!!}} 10 {{!!}} −471 / 1000 = −0.47100000...
| |
| |row18=3{{!!}}23 {{!!}} 4 {{!!}} 10 {{!!}} 2167 / 10000 = 0.21670000...
| |
| |row19=2{{!!}}29 {{!!}} 3 {{!!}} 10 {{!!}} −159 / 1000 = −0.15900000...
| |
| |row20=2{{!!}}31 {{!!}} 3 {{!!}} 10 {{!!}} −39 / 1000 = −0.03900000...
| |
| | |
| }}
| |
| | |
| ==References==
| |
| * {{cite journal
| |
| |first1=Richard P.
| |
| |last1=Brent
| |
| |title=Fast multiple-precision evaluation of elementary functions
| |
| |journal=J. ACM
| |
| |volume=23
| |
| |issue=2
| |
| |year=1976
| |
| |pages=242–251
| |
| |doi=10.1145/321941.321944
| |
| |mr=0395314
| |
| }}
| |
| * {{cite journal
| |
| |first1=Horace S.
| |
| |last1=Uhler
| |
| |title=Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17
| |
| |journal=Proc. Natl. Acad. Sci. U.S.A.
| |
| |volume=26
| |
| |year=1940
| |
| |pages=205–212
| |
| |url=http://www.pnas.org/content/26/3/205.full.pdf+html
| |
| |mr=0001523
| |
| }}
| |
| * {{cite journal
| |
| |first1=Dura W.
| |
| |last1=Sweeney
| |
| |title=On the computation of Euler's constant
| |
| |journal=Mathematics of Computation
| |
| |year=1963
| |
| |volume=17
| |
| |pages=170-178
| |
| |doi=10.1090/S0025-5718-1963-0160308-X
| |
| |mr=0160308
| |
| }}
| |
| * {{cite journal
| |
| |first1=Marc
| |
| |last1=Chamberland
| |
| |title=Binary BBP-formulae for logarithms and generalized Gaussian–Mersenne primes
| |
| |journal=Journal of Integer Sequences
| |
| |url=http://www.emis.ams.org/journals/JIS/VOL6/Chamberland/chamberland60.pdf
| |
| |volume=6
| |
| |page=03.3.7
| |
| |year=2003
| |
| |mr=2046407
| |
| }}
| |
| * {{cite journal
| |
| |first1=Boris
| |
| |last1=Gourévitch
| |
| |first2=Jesus
| |
| |last2=Guillera Goyanes
| |
| |title=Construction of binomial sums for π and polylogarithmic constants inspired by BBP formulas
| |
| |journal=Applied Math. E-Notes
| |
| |volume=7
| |
| |year=2007
| |
| |url=http://www.math.nthu.edu.tw/~amen/2007/061028-2.pdf
| |
| |mr=2346048
| |
| |pages=237–246}}
| |
| * {{cite journal
| |
| |first1=Qiang
| |
| |last1=Wu
| |
| |title=On the linear independence measure of logarithms of rational numbers
| |
| |journal=Mathematics of Computation
| |
| |volume=72
| |
| |issue=242
| |
| |pages=901–911
| |
| |doi=10.1090/S0025-5718-02-01442-4
| |
| |year=2003
| |
| }}
| |
| {{reflist}}
| |
| | |
| ==External links==
| |
| * {{MathWorld|urlname=NaturalLogarithmof2|title=Natural logarithm of 2}}
| |
| * {{planetmath reference|id=10699|title=table of natural logarithms}}
| |
| | |
| * {{cite web|url=http://numbers.computation.free.fr/Constants/Log2/log2.html|title=The logarithm constant:log 2|last1=Gourdon|first1=Xavier|last2=Sebah|first2=Pascal}}
| |
| | |
| {{DEFAULTSORT:Natural Logarithm Of 2}}
| |
| [[Category:Numbers]]
| |
| [[Category:Logarithms]]
| |
| [[Category:Irrational numbers]]
| |