|
|
Line 1: |
Line 1: |
| {| class=wikitable align=right width=450
| | I’m Lenard from Hooton Pagnell studying Continuing Education and Summer Sessions. I did my schooling, secured 72% and hope to find someone with same interests in Racquetball.<br><br>Here is my webpage - [http://www.wallpaperhdquality.com/profile/toliddell Popular mountain bike sizing.] |
| |- align=center
| |
| |[[File:6-cube_t5.svg|150px]]<BR>[[6-orthoplex]]<BR>{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node}}
| |
| |[[File:6-cube_t4.svg|150px]]<BR>Rectified 6-orthoplex<BR>{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node}}
| |
| |[[File:6-cube_t3.svg|150px]]<BR>Birectified 6-orthoplex<BR>{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node}}
| |
| |- align=center
| |
| |[[File:6-cube_t2.svg|150px]]<BR>[[Birectified 6-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|4|node}}
| |
| |[[File:6-cube_t1.svg|150px]]<BR>[[Rectified 6-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|4|node}}
| |
| |[[File:6-cube_t0.svg|150px]]<BR>[[6-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
| |
| |-
| |
| !colspan=4|[[Orthogonal projection]]s in B<sub>6</sub> [[Coxeter plane]]
| |
| |}
| |
| In six-dimensional [[geometry]], a '''rectified 6-orthoplex''' is a convex [[uniform 6-polytope]], being a [[Rectification (geometry)|rectification]] of the regular [[6-orthoplex]].
| |
| | |
| There are unique 6 degrees of rectifications, the zeroth being the [[6-orthoplex]], and the 6th and last being the [[6-cube]]. Vertices of the rectified 6-orthoplex are located at the edge-centers of the 6-orthoplex. Vertices of the birectified 6-orthoplex are located in the triangular face centers of the 6-orthoplex.
| |
| | |
| == Rectified 6-orthoplex==
| |
| {| class="wikitable" align="right" style="margin-left:10px" width="250"
| |
| !bgcolor=#e7dcc3 colspan=2|Rectified hexacross
| |
| |-
| |
| |bgcolor=#e7dcc3|Type||[[uniform polypeton]]
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Schläfli symbol]]|| r{3,3,3,3,4}
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node|3|node_1|3|node|3|node|3|node|4|node}}<br>{{CDD|node|3|node_1|3|node|3|node|split1|nodes}}
| |
| |-
| |
| |bgcolor=#e7dcc3|5-faces||76 total:<BR>64 [[rectified 5-simplex]]<BR>12 [[5-orthoplex]]
| |
| |-
| |
| |bgcolor=#e7dcc3|4-faces||576 total:<BR>192 [[rectified 5-cell]]<BR>384 [[5-cell]]
| |
| |-
| |
| |bgcolor=#e7dcc3|Cells||1200 total:<BR>240 [[octahedron]]<BR>960 [[tetrahedron]]
| |
| |-
| |
| |bgcolor=#e7dcc3|Faces||1120 total:<BR>160 and 960 triangles
| |
| |-
| |
| |bgcolor=#e7dcc3|Edges||480
| |
| |-
| |
| |bgcolor=#e7dcc3|Vertices||60
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Vertex figure]]||16-cell prism
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Petrie polygon]]||[[Dodecagon]]
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter group]]s||B<sub>6</sub>, [3,3,3,3,4]<BR>D<sub>6</sub>, [3<sup>3,1,1</sup>]
| |
| |-
| |
| |bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]]
| |
| |}
| |
| | |
| The ''rectified 6-orthoplex'' is the [[vertex figure]] for the [[demihexeractic honeycomb]].
| |
| :{{CDD|nodes_10ru|split2|node|3|node|3|node|split1|nodes}} or {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|4|node}}
| |
| | |
| === Alternate names===
| |
| * rectified hexacross
| |
| * rectified hexacontitetrapeton (acronym: rag) (Jonathan Bowers)
| |
| | |
| === Construction ===
| |
| There are two [[Coxeter group]]s associated with the ''rectified hexacross'', one with the C<sub>6</sub> or [4,3,3,3,3] Coxeter group, and a lower symmetry with two copies of pentacross facets, alternating, with the D<sub>6</sub> or [3<sup>3,1,1</sup>] Coxeter group.
| |
| | |
| === Cartesian coordinates ===
| |
| [[Cartesian coordinates]] for the vertices of a rectified hexacross, centered at the origin, edge length <math> \sqrt{2}\ </math> are all permutations of:
| |
| : (±1,±1,0,0,0,0)
| |
| | |
| ==== Root vectors ====
| |
| | |
| The 60 vertices represent the root vectors of the [[simple Lie group]] D<sub>6</sub>. The vertices can be seen in 3 [[hyperplane]]s, with the 15 vertices [[rectified 5-simplex]]s cells on opposite sides, and 30 vertices of an [[expanded 5-simplex]] passing through the center. When combined with the 12 vertices of the 6-orthoplex, these vertices represent the 72 root vectors of the B<sub>6</sub> and C<sub>6</sub> simple Lie groups.
| |
| | |
| ===Images===
| |
| {{6-cube Coxeter plane graphs|t5|150}}
| |
| | |
| == Birectified 6-orthoplex==
| |
| {| class="wikitable" align="right" style="margin-left:10px" width="250"
| |
| !bgcolor=#e7dcc3 colspan=2|Birectified 6-orthoplex
| |
| |-
| |
| |bgcolor=#e7dcc3|Type||[[uniform polypeton]]
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Schläfli symbol]]|| 2r{3,3,3,3,4}
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node|3|node|3|node_1|3|node|3|node|4|node}}<br>{{CDD|node|3|node_1|3|node|3|node|split1|nodes}}
| |
| |-
| |
| |bgcolor=#e7dcc3|5-faces||76
| |
| |-
| |
| |bgcolor=#e7dcc3|4-faces||636
| |
| |-
| |
| |bgcolor=#e7dcc3|Cells||2160
| |
| |-
| |
| |bgcolor=#e7dcc3|Faces||2880
| |
| |-
| |
| |bgcolor=#e7dcc3|Edges||1440
| |
| |-
| |
| |bgcolor=#e7dcc3|Vertices||160
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Vertex figure]]||[[equilateral triangle|{3}]]×[[octahedron|{3,4}]] duoprism
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Petrie polygon]]||[[Dodecagon]]
| |
| |-
| |
| |bgcolor=#e7dcc3|[[Coxeter group]]s||B<sub>6</sub>, [3,3,3,3,4]<BR>D<sub>6</sub>, [3<sup>3,1,1</sup>]
| |
| |-
| |
| |bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]]
| |
| |}
| |
| The '''birectified 6-orthoplex''' can tessellation space in the [[trirectified 6-cubic honeycomb]].
| |
| | |
| === Alternate names===
| |
| * birectified hexacross
| |
| * birectified hexacontitetrapeton (acronym: brag) (Jonathan Bowers)
| |
| | |
| === Cartesian coordinates ===
| |
| [[Cartesian coordinates]] for the vertices of a rectified hexacross, centered at the origin, edge length <math> \sqrt{2}\ </math> are all permutations of:
| |
| : (±1,±1,±1,0,0,0)
| |
| | |
| ===Images===
| |
| {{6-cube Coxeter plane graphs|t4|150}}
| |
| | |
| == Related polytopes ==
| |
| | |
| These polytopes are a part a family of 63 [[Uniform_polypeton|uniform polypeta]] generated from the B<sub>6</sub> [[Coxeter plane]], including the regular [[6-cube]] or [[6-orthoplex]].
| |
| | |
| {{Hexeract family}}
| |
| | |
| == Notes==
| |
| {{reflist}}
| |
| | |
| == References==
| |
| * [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]:
| |
| ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973
| |
| ** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
| |
| *** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10]
| |
| *** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591]
| |
| *** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]
| |
| * [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript (1991)
| |
| ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D.
| |
| * {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta)| o3x3o3o3o4o - rag}}
| |
| | |
| == External links ==
| |
| *{{GlossaryForHyperspace | anchor=Cross | title=Cross polytope }}
| |
| * [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
| |
| * [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
| |
| | |
| {{polytopes}}
| |
| | |
| [[Category:6-polytopes]]
| |