Combinatory categorial grammar: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Baojunwei001
en>JMP EAX
Further reading: this is mroe up to date
 
Line 1: Line 1:
In mathematics, the '''Prouhet–Tarry–Escott problem''' asks for two disjoint [[Set (mathematics)|sets]] ''A'' and ''B'' of ''n'' [[integer]]s each, such that:
Parole or Probation Officer Dorothy from Fort Saskatchewan, loves to spend some time house plants, como ganhar dinheiro na internet and badge collecting. During the previous year has completed a visit to Djoudj National Bird Sanctuary.<br><br>my web page :: [http://comoganhardinheironainternet.comoganhardinheiro101.com ganhando dinheiro na internet]
 
:<math>\sum_{a\in A} a^i = \sum_{b\in B} b^i</math>
 
for each integer ''i'' from 1 to a given ''k''.<ref name="Borwein">{{harvnb|Borwein|p=85}}</ref>
 
This problem was named after {{link-interwiki|lang=fr|en=Eugène Prouhet}}, who studied it in the early 1850s, and [[Gaston Tarry]] and Escott, who studied it in the early 1910s.
 
The largest value of ''k'' for which a solution with ''n'' = ''k''+1 is known is given by ''A'' = {±22,&nbsp;±61,&nbsp;±86,&nbsp;±127,&nbsp;±140,&nbsp;±151}, ''B''&nbsp;=&nbsp;{±35,&nbsp;±47,&nbsp;±94,&nbsp;±121,&nbsp;±146,&nbsp;±148} for which ''k''&nbsp;=&nbsp;11.<ref>[http://euler.free.fr/eslp/TarryPrb.htm#Ideal%20symmetric Solution found by Nuutti Kuosa, Jean-Charles Meyrignac and Chen Shuwen, in 1999].</ref>
 
== Example ==
 
For example, a solution with ''n''&nbsp;=&nbsp;6 and ''k''&nbsp;=&nbsp;5 is the two sets {&nbsp;0,&nbsp;5,&nbsp;6,&nbsp;16,&nbsp;17,&nbsp;22&nbsp;}
and {&nbsp;1,&nbsp;2,&nbsp;10,&nbsp;12,&nbsp;20,&nbsp;21&nbsp;}, because:
 
: 0<sup>1</sup> + 5<sup>1</sup> + 6<sup>1</sup> + 16<sup>1</sup> + 17<sup>1</sup> + 22<sup>1</sup> = 1<sup>1</sup> + 2<sup>1</sup> + 10<sup>1</sup> + 12<sup>1</sup> + 20<sup>1</sup> + 21<sup>1</sup>
 
: 0<sup>2</sup> + 5<sup>2</sup> + 6<sup>2</sup> + 16<sup>2</sup> + 17<sup>2</sup> + 22<sup>2</sup> = 1<sup>2</sup> + 2<sup>2</sup> + 10<sup>2</sup> + 12<sup>2</sup> + 20<sup>2</sup> + 21<sup>2</sup>
 
: 0<sup>3</sup> + 5<sup>3</sup> + 6<sup>3</sup> + 16<sup>3</sup> + 17<sup>3</sup> + 22<sup>3</sup> = 1<sup>3</sup> + 2<sup>3</sup> + 10<sup>3</sup> + 12<sup>3</sup> + 20<sup>3</sup> + 21<sup>3</sup>
 
: 0<sup>4</sup> + 5<sup>4</sup> + 6<sup>4</sup> + 16<sup>4</sup> + 17<sup>4</sup> + 22<sup>4</sup> = 1<sup>4</sup> + 2<sup>4</sup> + 10<sup>4</sup> + 12<sup>4</sup> + 20<sup>4</sup> + 21<sup>4</sup>
 
: 0<sup>5</sup> + 5<sup>5</sup> + 6<sup>5</sup> + 16<sup>5</sup> + 17<sup>5</sup> + 22<sup>5</sup> = 1<sup>5</sup> + 2<sup>5</sup> + 10<sup>5</sup> + 12<sup>5</sup> + 20<sup>5</sup> + 21<sup>5</sup>.
 
==See also==
* [[Thue–Morse sequence#The_Prouhet–Tarry–Escott_problem|Thue–Morse sequence]]
* [[Euler's sum of powers conjecture]]
* [[Beal's conjecture]]
* [[Jacobi–Madden equation]]
* [[Taxicab number]]
* [[Pythagorean quadruple]]
* [[Sums of powers]], a list of related conjectures and theorems
 
==Notes==
{{reflist}}
 
==References==
*{{citation | last=Borwein | first=Peter B. | authorlink=Peter Borwein | title=Computational Excursions in Analysis and Number Theory | chapter=The Prouhet–Tarry–Escott problem | pages=85–96 | series=CMS Books in Mathematics | publisher=[[Springer-Verlag]] | year=2002 | isbn=0-387-95444-9 | url=http://books.google.com/?id=A_ITwN13J6YC&pg=85#PPA85,M1 | accessdate=2009-06-16}} Chap.11.
 
==External links==
*[http://www.nabble.com/Prouhet-Tarry-Escott-problem-td10624352.html Prouhet-Tarry-Escott problem]
*{{mathworld | title = Prouhet-Tarry-Escott problem | urlname = Prouhet-Tarry-EscottProblem }}
 
{{DEFAULTSORT:Prouhet-Tarry-Escott problem}}
[[Category:Number theory]]
[[Category:Mathematical problems]]

Latest revision as of 19:35, 18 August 2014

Parole or Probation Officer Dorothy from Fort Saskatchewan, loves to spend some time house plants, como ganhar dinheiro na internet and badge collecting. During the previous year has completed a visit to Djoudj National Bird Sanctuary.

my web page :: ganhando dinheiro na internet