Overall pressure ratio: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Pilot850
en>Bhny
 
Line 1: Line 1:
{{Technical|date=October 2011}}
The author is known as Wilber Pegues. He is an information officer. To perform lacross is the thing I love most of all. Her family life in Ohio.<br><br>Also visit my webpage - [http://ltreme.com/index.php?do=/profile-127790/info/ online psychic chat]
 
A '''second-order cone program''' ('''SOCP''') is a [[convex optimization]] problem of the form
 
:minimize <math>\ f^T x \ </math>
:subject to
::<math>\lVert A_i x + b_i \rVert_2 \leq c_i^T x + d_i,\quad i = 1,\dots,m</math>
::<math>Fx = g \ </math>
 
where the problem parameters are <math>f \in \mathbb{R}^n, \ A_i \in \mathbb{R}^{{n_i}\times n}, \ b_i \in \mathbb{R}^{n_i}, \ c_i \in  \mathbb{R}^n, \ d_i \in \mathbb{R}, \ F \in \mathbb{R}^{p\times n}</math>, and <math>g \in \mathbb{R}^p</math>. Here <math>x\in\mathbb{R}^n</math> is the optimization variable.<ref name="boyd">{{cite book |last1=Boyd |first1=Stephen |last2=Vandenberghe |first2=Lieven |title=Convex Optimization |publisher=Cambridge University Press |year=2004 |isbn=978-0-521-83378-3 |url=http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf |format=pdf |accessdate=October 3, 2011}}</ref>
 
When <math>A_i = 0</math> for <math>i = 1,\dots,m</math>, the SOCP reduces to a [[linear program]]. When <math>c_i = 0 </math> for <math>i = 1,\dots,m</math>, the SOCP is equivalent to a convex [[quadratically constrained quadratic program]].  [[Semidefinite programming]] subsumes SOCPs as the SOCP constraints can be written as [[linear matrix inequality|linear matrix inequalities]] (LMI) and can be reformulated as an instance of semi definite program. SOCPs can be solved with great efficiency by [[interior point methods]].
 
==Example: Quadratic constraint==
Consider a [[quadratically constrained quadratic program|quadratic constraint]] of the form
 
:<math> x^T A^T A x + b^T x + c \leq 0. </math>
 
This is equivalent to the SOC constraint
 
:<math> \left\|
\begin{matrix}
(1 + b^T x +c)/2\\
Ax
\end{matrix} \right\|_2
 
\leq (1 - b^T x -c)/2.</math>
 
==Example: Stochastic programming==
Consider a [[stochastic linear program]] in inequality form
 
:minimize <math>\ c^T x \ </math>
:subject to
:: <math>P(a_i^T(x) \geq b_i) \geq p, \quad i = 1,\dots,m </math>
 
where the parameters <math>a_i \ </math> are independent Gaussian random vectors with mean <math>\bar{a}_i</math> and covariance <math>\Sigma_i \ </math> and <math>p\geq0.5</math>.  This problem can be expressed as the SOCP
 
:minimize <math>\ c^T x \ </math>
:subject to
:: <math>\bar{a}_i^T (x) + \Phi^{-1}(1-p) \lVert \Sigma_i^{1/2} x \rVert_2 \geq b_i  , \quad i = 1,\dots,m </math>
 
where <math>\Phi^{-1} \ </math> is the inverse [[error function]].<ref name="boyd"/>
 
==Solvers and scripting (programming) languages==
 
{| class="wikitable"
|-
!Name
!License
!Brief info
|-
|Xpress||commercial|| from 7.6 release
|-
|[[CPLEX]]||commercial||
|-
|[[Gurobi]]||commercial||parallel SOCP barrier algorithm
|-
|JOptimizer||[[Apache License]]|| Java library for convex optimization (open source)
|-
|[[MOSEK]]||commercial||
|-
|[http://sedumi.ie.lehigh.edu/ SeDuMi]||GPL v3||Matlab package with primal–dual interior point methods<ref>{{cite journal|last=Sturm|first=Jos F.|title=Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones|journal=Optimization Methods and Software|year=1999|volume=11-12|pages=625-653}}</ref>
|-
|[http://www.math.cmu.edu/~reha/sdpt3.html SDPT3]||GPL v2||Matlab package with primal–dual interior point methods<ref>{{cite journal|last=Toh|first=K.C.|coauthors=M.J. Todd, and R.H. Tutuncu|title=SDPT3 - a Matlab software package for semidefinite programming|journal=Optimization Methods and Software|year=1999|volume=11|pages=545-581}}</ref> <ref>{{cite journal|last=Tutuncu|first=R.H.|coauthors=K.C. Toh, and M.J. Todd|title=Solving semidefinite-quadratic-linear programs using SDPT3|journal=Mathematical Programming|year=2003|volume=Ser. B, 95|pages=189-217}}</ref>
|-
|[[OpenOpt]]||[[BSD]]||universal cross-platform numerical optimization framework, see its [http://openopt.org/SOCP SOCP] page and [http://openopt.org/Problems other problems] involved. Uses [[NumPy]] arrays and [[SciPy]] sparse matrices.
|}
 
==References==
{{reflist}}
 
[[Category:Mathematical optimization]]
[[Category:Convex optimization]]

Latest revision as of 19:50, 19 June 2014

The author is known as Wilber Pegues. He is an information officer. To perform lacross is the thing I love most of all. Her family life in Ohio.

Also visit my webpage - online psychic chat