Vector notation: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Mvakkur
m tidied up the language a bit, removed some wordy phrases, deleted some unnecessary commas
en>Fgnievinski
 
Line 1: Line 1:
In [[optimal control]], problems of '''singular control''' are problems that are difficult to solve because a straightforward application of [[Pontryagin's minimum principle]] fails to yield a complete solution.  Only a few such problems have been solved, such as [[Merton's portfolio problem]] in [[financial economics]] or [[trajectory optimization]] in aeronautics. A more technical explanation follows.
Andera is what you can call her but she by no means really favored that title. Doing ballet is something she would never give up. For a whilst I've been in Mississippi but now I'm contemplating other choices. My working day job is an invoicing officer but I've already applied for an additional  clairvoyants - [http://www.article-galaxy.com/profile.php?a=143251 www.article-galaxy.com] - 1.<br><br>Also visit my web-site :: accurate [http://si.dgmensa.org/xe/index.php?document_srl=48014&mid=c0102 love psychic] predictions [[http://cpacs.org/index.php?document_srl=90091&mid=board_zTGg26 http://cpacs.org/index.php?document_srl=90091&mid=board_zTGg26]]
 
The most common difficulty in applying Pontryagin's principle arises when the Hamiltonian depends linearly on the control <math>u</math>, i.e., is of the form: <math>H(u)=\phi(x,\lambda,t)u+\cdots</math> and the control is restricted to being between an upper and a lower bound: <math>a\le u(t)\le b</math>. To minimize <math>H(u)</math>, we need to make <math>u</math> as big or as small as possible, depending on the sign of <math>\phi(x,\lambda,t)</math>, specifically:
 
: <math>u(t) = \begin{cases} b, & \phi(x,\lambda,t)<0 \\ ?, & \phi(x,\lambda,t)=0 \\ a, & \phi(x,\lambda,t)>0.\end{cases}</math>
 
If <math>\phi</math> is positive at some times, negative at others and is only zero instantaneously, then the solution is straightforward and is a [[bang-bang control]] that switches from <math>b</math> to <math>a</math> at times when <math>\phi</math> switches from negative to positive.
 
The case when <math>\phi</math> remains at zero for a finite length of time <math>t_1\le t\le t_2</math> is called the '''singular control''' case. Between <math>t_1</math> and <math>t_2</math> the maximization of the Hamiltonian with respect to u gives us no useful information and the solution in that time interval is going to have to be found from other considerations. (One approach would be to repeatedly differentiate <math>\partial H/\partial u</math> with respect to time until the control u again explicitly appears, which is guaranteed to happen eventually. One can then set that expression to zero and solve for u.  This amounts to saying that between <math>t_1</math> and <math>t_2</math> the control <math>u</math> is determined by the requirement that the singularity condition continues to hold. The resulting so-called singular arc will be optimal if it satisfies the '''Kelley condition''':
 
:<math>(-1)^k \frac{\partial}{\partial u} \left[ {\left( \frac{d}{dt} \right)}^{2k} H_u  \right] \ge 0 ,\,  k=0,1,\cdots</math>
 
.<ref>Bryson, Ho: Applied Optimal Control, Page 246</ref>  This condition is also called the generalized [[Legendre-Clebsch condition]]).
 
The term '''bang-singular control''' refers to a control that has a bang-bang portion as well as a singular portion.
 
==References==
 
{{reflist}}
 
{{DEFAULTSORT:Singular Control}}
[[Category:Control theory]]

Latest revision as of 16:36, 5 October 2014

Andera is what you can call her but she by no means really favored that title. Doing ballet is something she would never give up. For a whilst I've been in Mississippi but now I'm contemplating other choices. My working day job is an invoicing officer but I've already applied for an additional clairvoyants - www.article-galaxy.com - 1.

Also visit my web-site :: accurate love psychic predictions [http://cpacs.org/index.php?document_srl=90091&mid=board_zTGg26]