File:Chebyshev.svg: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Fbot
BOT: Assessing Move to Commons Priority
 
 
Line 1: Line 1:
[[File:Angular eccentricity and linear eccentricity.svg|thumb|200px|Angular eccentricity α (alpha) and linear eccentricity (ε). Note that OA=BF=a.]]
Nestor is the name my parents gave me but I don't like when individuals use my full title. Bookkeeping is how he supports his family members and his wage has been truly fulfilling. Playing croquet is some thing I will by no means give up. My house is now in Kansas.<br><br>Review my web page; [http://tor-und-fenstertechnik.de/index/users/view/id/20377 extended auto warranty]
The '''angular eccentricity''' is one of many parameters which arise in the study of the [[ellipse]] or [[ellipsoid]]. It is denoted here by &alpha; (alpha). It may be defined  in terms of the [[Eccentricity (mathematics)|eccentricity]], ''e'', or the aspect ratio, ''b/a'' (the ratio of the  [[semi-minor axis]]  and the [[semi-major axis]]):
:<math>\alpha=\arcsin(e)=\arccos\left(\frac{b}{a}\right).
\,\!</math>
Angular eccentricity is not currently used in English language publications on mathematics, geodesy or map projections but it does appear in older literature.<ref>{{cite book |authorlink=Charles Haynes Haswell | last = Haswell | first = Charles Haynes | url =http://books.google.com/books?pg=PA381&id=Uk4wAAAAMAAJ#v=onepage&f=true|title = Mechanics' and Engineers' Pocket-book of Tables, Rules, and Formulas |publisher = Harper & Brothers | year = 1920 | accessdate = 2007-04-09}}</ref>
 
Any non-dimensional parameter of the ellipse may be expressed in terms of the angular eccentricity. Such expressions are listed in the following table after the conventional definitions.<ref name=rapp>Rapp, Richard H. (1991). ''Geometric Geodesy, Part I'',  Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus, Ohio.[http://hdl.handle.net/1811/24333]</ref> in terms of the semi-axes. The notation for these parameters varies. Here we follow Rapp<ref name=rapp />  
::{| class="wikitable"  style="border: 1px solid darkgray"  cellpadding="5" 
|  (first) eccentricty
| style="padding-left: 0.5em"| <math>e</math>
|  style="padding-left: 1.5em"| <math>\frac{\sqrt{a^2-b^2}}{a}</math>
|  style="padding-left: 1.5em"| <math>\sin\alpha</math>
|-
| second eccentricity
| style="padding-left: 0.5em"| <math>e'</math>&nbsp;
| style="padding-left: 1.5em"| <math>\frac{\sqrt{a^2-b^2}}{b}</math> &nbsp; 
|  style="padding-left: 1.5em"|<math>\tan\alpha</math>&nbsp;
|-
| third eccentricity
|  style="padding-left: 0.5em"| <math>e''</math>&nbsp;
|  style="padding-left: 1.5em"| <math>\sqrt{\frac{a^2-b^2}{a^2+b^2}}</math>  &nbsp;
| style="padding-left: 1.5em"|<math>\frac{\sin\alpha}{\sqrt{2-\sin^2\alpha}}</math>&nbsp;
|-
|  style="padding-left: 0.5em"| (first) flattening
| style="padding-left: 0.5em"|<math>f</math>
| style="padding-left: 1.5em"|<math>\frac{a-b}{a}</math>
| style="padding-left: 1.5em"|<math>1-\cos\alpha</math>
|<math>=2\sin^2\left(\frac{\alpha}{2}\right)</math>
|-
| style="padding-left: 0.5em"|second flattening
| style="padding-left: 0.5em"|<math>f'</math>
| style="padding-left: 1.5em"|<math>\frac{a-b}{b}</math>
| style="padding-left: 1.5em"|<math>\sec\alpha-1</math> 
| <math>=\frac{2\sin^2(\frac{\alpha}{2})}{1-2\sin^2(\frac{\alpha}{2})}</math> &nbsp;
|-
| style="padding-left: 0.5em"|  third  flattening
| style="padding-left: 0.5em"|<math>n</math>
| style="padding-left: 1.5em"|<math>\frac{a-b}{a+b}</math>
| style="padding-left: 1.5em"|<math>\frac{1-\cos\alpha}{1+\cos\alpha}</math>
|<math>= \tan^2\left(\frac{\alpha}{2}\right)</math>
|}
The alternative expressions for the flattenings would guard against large cancellations in numerical work.
 
==See also==
*[http://www.oc.nps.navy.mil/~garfield/ellipse_app2.pdf Toby Garfield's APPENDIX A: The ellipse]  [http://web.archive.org/web/20070401052928/http://www.oc.nps.navy.mil/~garfield/ellipse_app2.pdf <nowiki>[Archived copy]</nowiki>.]
*[http://www.ec-gis.org/sdi/publist/pdfs/annoni-etal2003eur.pdf Map Projections for Europe (pg.116)]
 
==References==
{{Reflist}}
 
[[Category:Geodesy]]
[[Category:Conic sections]]

Latest revision as of 23:44, 21 February 2014

Nestor is the name my parents gave me but I don't like when individuals use my full title. Bookkeeping is how he supports his family members and his wage has been truly fulfilling. Playing croquet is some thing I will by no means give up. My house is now in Kansas.

Review my web page; extended auto warranty

There are no pages that use this file.