Simplex noise: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Stewbasic
The simplices are not regular in dimension 3 and higher
No edit summary
 
Line 1: Line 1:
In [[mathematics]] and [[physics]], in particular [[quantum information]], the term '''generalized Pauli matrices''' refers to families of matrices which generalize the (linear algebraic) properties of the [[Pauli matrices]]. Here,  a few classes of such matrices are summarized.
Oscar is how he's called and he completely loves this name. Playing baseball is the pastime he will by no means quit performing. For years he's been operating as a meter reader and it's something he really appreciate. North Dakota is her beginning place but she will have to move 1 day or an additional.<br><br>Feel free to surf to my web-site ... [http://www.1a-pornotube.com/user/GCalvert home std test]
 
== Generalized Gell-Mann matrices  (Hermitian)==
 
=== Construction ===
 
Let {{math|''E''<sub>''jk''</sub>}} be the matrix with 1 in the {{math|''jk''}}-th entry and 0 elsewhere. Consider the space of ''d''×''d''  complex matrices,  {{math|ℂ<sup>''d''×''d''</sup>}},  for a fixed ''d''.
 
Define the following matrices,
 
* For  {{math|''k'' < ''j''}},  &nbsp; {{math| ''f''<sub>''k,j''</sub><sup>''d''</sup> {{=}}  ''E<sub>kj</sub>''+''E<sub>jk</sub>''}} .
 
* For {{math|''k'' > ''j''}},  &nbsp;  {{math| ''f''<sub>''k,j''</sub><sup>''d''</sup> {{=}} − ''i'' (''E<sub>jk</sub>'' −  ''E<sub>kj</sub>'')}} .
 
* Let {{math|''h''<sub>1</sub><sup>''d''</sup> {{=}} ''I''<sub>''d''</sub>}}, the identity matrix.
 
* For {{math|1 < ''k'' < ''d''}},  &nbsp;  &nbsp;  &nbsp; <math>h_k ^d = h ^{d-1} _k \oplus 0 ~.</math>
 
* For {{math|''k'' {{=}} ''d''}},  &nbsp;  &nbsp; <math>~~~h_d ^d = \sqrt{\tfrac{2}{d(d-1)}}  \left ( h_1 ^{d-1} \oplus (1-d)\right )~.</math>
 
The collection of matrices defined above are called the ''generalized Gell-Mann matrices'', in dimension {{mvar|d}}.
The symbol ⊕  (utilized in the [[Cartan subalgebra]] above) means [[Matrix_addition#Direct_sum|matrix direct sum]].
 
The generalized Gell-Mann matrices are [[Hermitian matrix|Hermitian]] and [[traceless]] by construction, just like the Pauli matrices. One can also check that they are orthogonal in the [[Hilbert-Schmidt operator|Hilbert-Schmidt]] [[inner product]] on {{math|ℂ<sup>''d''×''d''</sup>}}. By dimension count, one sees that they span the vector space of {{math|''d'' × ''d''}}  complex matrices, <math>\mathfrak{gl}</math>(''d'',ℂ).
 
In dimensions ''d''=2 and 3, the above construction recovers the Pauli and [[Gell-Mann matrices]], respectively.
 
== A non-Hermitian generalization of Pauli matrices ==
 
The Pauli matrices <math>\sigma _1</math> and <math>\sigma _3</math> satisfy the following:
 
:<math>
\sigma _1 ^2 = \sigma _3 ^2 = I, \; \sigma _1 \sigma _3 = - \sigma _3 \sigma _1 = e^{\pi i} \sigma _3 \sigma_1.
</math>
 
The so-called [[Hadamard matrix|Walsh-Hadamard conjugation matrix]] is
 
:<math>
W = \tfrac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\ 1 & -1
\end{bmatrix}.
</math>
 
Like the Pauli matrices, ''W'' is both [[Hermitian matrix|Hermitian]] and [[Unitary matrix|unitary]]. <math>\sigma _1, \; \sigma _3</math> and ''W'' satisfy the relation
 
:<math>\; \sigma _1 = W \sigma _3 W^* .</math>
 
The goal now is to extend the above to higher dimensions, ''d'', a problem solved by [[James Joseph Sylvester|J. J. Sylvester]] (1882).
 
=== Construction: The clock and shift matrices===
 
Fix the dimension {{mvar|d}} as before. Let  {{math|''ω'' {{=}} exp(2''πi''/''d'')}},  a root of unity. Since  {{math|''ω''<sup>''d''</sup> {{=}} 1}}  and {{math|''ω''  ≠ 1}},  the sum  of all roots annuls:
 
:<math>1 + \omega + \cdots + \omega ^{d-1} = 0 .</math>
Integer indices may then be cyclically identified mod {{mvar|d}}.
 
Now define, with Sylvester, the
'''shift matrix'''<ref>Sylvester, J. J., (1882), ''Johns Hopkins University Circulars'' '''I''': 241-242; ibid '''II''' (1883) 46;
ibid '''III''' (1884) 7-9. Summarized in ''The Collected Mathematics Papers of James Joseph Sylvester'' (Cambridge University Press, 1909) v '''III''' .  
[http://quod.lib.umich.edu/u/umhistmath/aas8085.0003.001/664?rgn=full+text;view=pdf;q1=nonions online]  and [http://quod.lib.umich.edu/u/umhistmath/AAS8085.0004.001/165?cite1=Sylvester;cite1restrict=author;rgn=full+text;view=pdf  further].
</ref>
:<math>
\Sigma _1 =
\begin{bmatrix}
0          & 0 & 0      & \cdots &0 & 1\\
1          & 0 & 0      & \cdots & 0 & 0\\
0          & 1 & 0      & \cdots & 0 & 0\\
0      & 0    & 1 & \cdots & 0 & 0 \\
\vdots      & \vdots    & \vdots & \ddots &\vdots &\vdots \\
0          & 0    &0  & \cdots    & 1 & 0\\
\end{bmatrix}
</math>
and the '''clock matrix''',
:<math>
\Sigma _3 =
\begin{bmatrix}
1      & 0        & 0 & \cdots & 0\\
0      & \omega    & 0 & \cdots & 0\\
0      & 0        &\omega ^2 & \cdots & 0\\
\vdots & \vdots    & \vdots    & \ddots & \vdots\\
0 & 0 & 0 & \cdots & \omega ^{d-1}
\end{bmatrix}.
</math>
 
These matrices generalize ''σ''<sub>1</sub> and ''σ''<sub>3</sub>, respectively.
 
Note that the unitarity and tracelessness of the two Pauli matrices  is preserved, but not Hermiticity in dimensions higher than two. Since Pauli matrices describe [[Quaternions]], Sylvester dubbed the higher-dimensional analogs "nonions", "sedenions", etc.
 
These two matrices are also the cornerstone of '''quantum mechanical dynamics in finite-dimensional vector spaces'''<ref>[[Hermann Weyl|Weyl, H.]], "Quantenmechanik und Gruppentheorie", ''Zeitschrift für Physik'',  '''46''' (1927) pp. 1–46, {{doi|10.1007/BF02055756}}.</ref><ref>Weyl, H., ''The Theory of Groups and Quantum Mechanics'' (Dover, New York, 1931)</ref><ref>{{cite doi|10.1007/BF00715110|noedit}}</ref>  as formulated by [[Hermann Weyl]], and find routine applications in numerous areas of mathematical physics.<ref>For a serviceable review,
see  Vourdas A. (2004), "Quantum systems with finite Hilbert space",  ''Rep. Prog. Phys.''  '''67'''  267.  doi: 10.1088/0034-4885/67/3/R03.</ref>  The clock matrix amounts to the exponential of position in a "clock" of ''d'' hours, and the shift matrix is just the translation operator in that cyclic vector space, so the exponential of the momentum. They are (finite-dimensional)  representations of the corresponding elements of the [[Heisenberg group]] on a ''d''-dimensional Hilbert space.
 
The following relations echo those of the Pauli matrices:
:<math>\Sigma _ 1 ^d = \Sigma _ 3 ^d = I</math>
and the braiding relation,
:<math>\; \Sigma_3 \Sigma _1 = \omega \Sigma_1 \Sigma _3 = e^{2 \pi i / d} \Sigma_1 \Sigma _3 ,</math>
the [[Stone–von_Neumann_theorem#Uniqueness_of_representation|Weyl formulation of the CCR]],  or
:<math>\; \Sigma_3 \Sigma _1    \Sigma _3^{d-1}  \Sigma_1 ^{d-1}      = \omega ~.</math>
 
On the other hand, to generalize the Walsh-Hadamard matrix ''W'', note
:<math>
W = \tfrac{1}{\sqrt{2}} 
\begin{bmatrix}
1 & 1 \\ 1 & \omega ^{2 -1}
\end{bmatrix}
=
\tfrac{1}{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\ 1 & \omega ^{d -1}
\end{bmatrix}.
</math>
 
Define, again with Sylvester,  the following analog matrix,<ref>J.J. Sylvester, J. J. (1867) . ''Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers.'' [[Philosophical Magazine]], 34:461–475. [http://www.tandfonline.com/doi/pdf/10.1080/14786446708639914 online]</ref> still denoted by ''W'' in a slight abuse of notation,
:<math>
W =
\frac{1}{\sqrt{d}}
\begin{bmatrix}
1      & 1            & 1              & \cdots & 1\\
1      & \omega^{d-1}  & \omega^{2(d-1)} & \cdots & \omega^{(d-1)^2}\\
1      & \omega^{d-2}  & \omega^{2(d-2)} & \cdots & \omega^{(d-1)(d-2)}\\
\vdots & \vdots        & \vdots          & \ddots & \vdots \\
1      &\omega  &\omega ^2        & \cdots & \omega^{d-1}
 
\end{bmatrix}~.
</math>
 
It is evident that  ''W'' is no longer Hermitian, but is still unitary. Direct calculation  yields
:<math>\; \Sigma_1 = W \Sigma_3 W^*    ~,</math>
which is the desired analog result. Thus, {{mvar|W}} , a [[Vandermonde matrix]], arrays the eigenvectors of  {{math|Σ<sub>1</sub>}}, which has the same eigenvalues as  {{math|Σ<sub>3</sub>}}.
 
When ''d'' = 2<sup>k</sup>,  ''W'' * is precisely the matrix of the [[discrete Fourier transform#The unitary DFT|discrete Fourier transform]],
converting position coordinates to momentum coordinates and vice-versa.
 
The family of ''d'' <sup>2</sup> unitary (but non-Hermitian) independent matrices
 
{{Equation box 1
|indent =::
|equation =  <math>
(\Sigma_1)^k  (\Sigma_3)^j  =\sum_{m=0}^{d-1}    |m+k\rangle \omega^{jm} \langle m| , 
</math>|cellpadding= 6
|border
|border colour = #0073CF
|bgcolor=#F9FFF7}}
provides Sylvester's well-known basis for <math>\mathfrak{gl}</math>(''d'',ℂ), known as "nonions" <math>\mathfrak{gl}</math>(3,ℂ), "sedenions" <math>\mathfrak{gl}</math>(4,ℂ), etc...<ref>{{cite doi|10.1063/1.528006|noedit}}</ref>
 
This basis can be systematically connected to the above Hermitian basis.<ref>{{cite doi|10.1063/1.528788|noedit}}</ref> (For instance, the powers of  {{math|Σ<sub>3</sub>}}, the  [[Cartan subalgebra]],
map to linear combinations of the {{math|''h''<sub>''k''</sub><sup>''d''</sup>}}s.) It can further be used to identify <math>\mathfrak{gl}</math>(''d'',ℂ) , as {{math|''d'' → ∞}}, with the algebra of [[Poisson brackets]].
 
== See also ==
* [[Hermitian matrix]]
* [[Bloch sphere]]
* [[Discrete Fourier transform]]
* [[Generalized Clifford algebra]]
* [[Circulant matrix]]
* [[Shift operator]]
 
== Notes ==
{{Reflist}}
 
{{DEFAULTSORT:Generalizations Of Pauli Matrices}}
[[Category:Linear algebra]]

Latest revision as of 05:01, 12 January 2015

Oscar is how he's called and he completely loves this name. Playing baseball is the pastime he will by no means quit performing. For years he's been operating as a meter reader and it's something he really appreciate. North Dakota is her beginning place but she will have to move 1 day or an additional.

Feel free to surf to my web-site ... home std test