|
|
Line 1: |
Line 1: |
| In [[mathematics]], there is in [[mathematical analysis]] a class of '''Sobolev inequalities''', relating norms including those of [[Sobolev space]]s. These are used to prove the '''Sobolev embedding theorem''', giving inclusions between certain [[Sobolev space]]s, and the [[Rellich–Kondrachov theorem]] showing that under slightly stronger conditions some Sobolev spaces are [[compactly embedded]] in others. They are named after [[Sergei Lvovich Sobolev]].
| | Golda is what's created on my beginning certification although it is not the name on my birth certification. What me and my family members love is bungee jumping but I've been taking on new things recently. Office supervising is what she does for a residing. For many years he's been living in Mississippi and he doesn't plan on changing it.<br><br>my page: [http://www.seekavideo.com/playlist/2199/video/ psychic solutions by lynne] |
| | |
| ==Sobolev embedding theorem==
| |
| Let ''W''<sup>''k'',''p''</sup>('''R'''<sup>''n''</sup>) denote the Sobolev space consisting of all real-valued functions on '''R'''<sup>''n''</sup> whose first ''k'' [[weak derivative]]s are functions in [[Lp space|''L''<sup>''p''</sup>]]. Here ''k'' is a non-negative integer and 1 ≤ ''p'' ≤ ∞. The first part of the Sobolev embedding theorem states that
| |
| if ''k'' > ''ℓ'' and 1 ≤ ''p'' < ''q'' ≤ ∞ are two extended real numbers such that ''(k-ℓ)p < ''n'' and :
| |
| | |
| :<math>\frac{1}{q} = \frac{1}{p}-\frac{k-\ell}{n},</math>
| |
| | |
| then
| |
| | |
| :<math>W^{k,p}(\mathbf{R}^n)\subseteq W^{\ell,q}(\mathbf{R}^n)</math>
| |
| | |
| and the embedding is continuous. In the special case of ''k'' = 1 and ''ℓ'' = 0, Sobolev embedding gives
| |
| | |
| :<math>W^{1,p}(\mathbf{R}^n) \subseteq L^{p^*}(\mathbf{R}^n)</math>
| |
| | |
| where ''p''<sup>∗</sup> is the '''Sobolev conjugate''' of ''p'', given by
| |
| :<math>\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}.</math>
| |
| | |
| This special case of the Sobolev embedding is a direct consequence of the [[#Gagliardo–Nirenberg–Sobolev inequality|Gagliardo–Nirenberg–Sobolev inequality]].
| |
| | |
| The second part of the Sobolev embedding theorem applies to embeddings in [[Hölder space]]s ''C''<sup>''r'',α</sup>('''R'''<sup>''n''</sup>). If (''k''−''r''−α)/''n'' = 1/''p'' with α ∈ (0,1), then one has the embedding
| |
| :<math>W^{k,p}(\mathbf{R}^n)\subset C^{r,\alpha}(\mathbf{R}^n).</math>
| |
| This part of the Sobolev embedding is a direct consequence of [[#Morrey's inequality|Morrey's inequality]]. Intuitively, this inclusion expresses the fact that the existence of sufficiently many weak derivatives implies some continuity of the classical derivatives.
| |
| | |
| ;Generalizations
| |
| The Sobolev embedding theorem holds for Sobolev spaces ''W''<sup>''k'',''p''</sup>(''M'') on other suitable domains ''M''. In particular ({{harvnb|Aubin|1982|loc=Chapter 2}}; {{harvnb|Aubin|1976}}), both parts of the Sobolev embedding hold when
| |
| * ''M'' is a [[bounded set|bounded]] [[open set]] in '''R'''<sup>''n''</sup> with [[Lipschitz continuity|Lipschitz]] boundary (or whose boundary satisfies the cone condition; {{harvnb|Adams|1975|loc=Theorem 5.4}})
| |
| * ''M'' is a [[compact space|compact]] [[Riemannian manifold]]
| |
| * ''M'' is a compact Riemannian [[manifold with boundary]] with Lipschitz boundary
| |
| * ''M'' is a [[complete manifold|complete]] Riemannian manifold with [[injectivity radius]] δ > 0 and bounded [[sectional curvature]].
| |
| | |
| ;Kondrachov embedding theorem
| |
| {{main|Rellich–Kondrachov theorem}}
| |
| On a compact manifold with ''C''<sup>1</sup> boundary, the '''Kondrachov embedding theorem''' states that if ''k''> ''ℓ'' and ''k''−''n''/''p'' > ''ℓ''−''n''/''q'' then the Sobolev embedding
| |
| | |
| :<math>W^{k,p}(M)\subset W^{l,q}(M)</math>
| |
| | |
| is [[completely continuous]] (compact).
| |
| | |
| ==Gagliardo–Nirenberg–Sobolev inequality==
| |
| Assume that ''u'' is a continuously differentiable real-valued function on '''R'''<sup>''n''</sup> with [[compact support]]. Then for 1 ≤ ''p'' < ''n'' there is a constant ''C'' depending only on ''n'' and ''p'' such that
| |
| : <math>\|u\|_{L^{p^*}(\mathbf{R}^n)}\leq C \|Du\|_{L^{p}(\mathbf{R}^n)}</math>
| |
| where
| |
| :<math> p^*=\frac{pn}{n-p}>p</math>
| |
| is the [[Sobolev conjugate]] of ''p''.
| |
| | |
| The Gagliardo–Nirenberg–Sobolev inequality implies directly the Sobolev embedding
| |
| :<math>W^{1,p}(\mathbf{R}^n)\sub L^{p^*}(\mathbf{R}^n).</math>
| |
| The embeddings in other orders on '''R'''<sup>''n''</sup> are then obtained by suitable iteration.
| |
| | |
| ==Hardy–Littlewood–Sobolev lemma==
| |
| Sobolev's original proof of the Sobolev embedding theorem relied on the following, sometimes known as the Hardy–Littlewood–Sobolev [[fractional integration]] theorem. An equivalent statement is known as the '''Sobolev lemma''' in {{harv|Aubin|1982|loc=Chapter 2}}. A proof is in {{harv|Stein|loc=Chapter V, §1.3}}.
| |
| | |
| Let 0 < α <''n'' and 1 < ''p'' < ''q'' < ∞. Let ''I''<sub>α</sub> = (−Δ)<sup>−α/2</sup> be the [[Riesz potential]] on '''R'''<sup>''n''</sup>. Then, for ''q'' defined by
| |
| :<math>q = \frac{pn}{n-\alpha p}</math>
| |
| there exists a constant ''C'' depending only on ''p'' such that
| |
| :<math>\|I_\alpha f\|_q\le C\|f\|_p.</math>
| |
| | |
| If ''p'' = 1, then the weak-type estimate holds:
| |
| :<math>m\{x : |I_\alpha f(x)| > \lambda\} \le C\left(\frac{\|f\|_1}{\lambda}\right)^q</math>
| |
| where 1/''q'' = 1 − α/''n''.
| |
| | |
| The Hardy–Littlewood–Sobolev lemma implies the Sobolev embedding essentially by the relationship between the [[Riesz transform]]s and the Riesz potentials.
| |
| | |
| ==Morrey's inequality==
| |
| Assume ''n'' < ''p'' ≤ ∞. Then there exists a constant ''C'', depending only on ''p'' and ''n'', such that
| |
| :<math>\|u\|_{C^{0,\gamma}(\mathbf{R}^n)}\leq C \|u\|_{W^{1,p}(\mathbf{R}^n)}</math>
| |
| for all ''u'' ∈ C<sup>1</sup>('''R'''<sup>''n''</sup>) ∩ L<sup>''p''</sup>('''R'''<sup>''n''</sup>), where
| |
| :<math>\gamma=1-n/p.</math>
| |
| Thus if ''u'' ∈ ''W''<sup>1,''p''</sup>('''R'''<sup>''n''</sup>), then ''u'' is in fact [[Hölder continuous]] of exponent γ,
| |
| after possibly being redefined on a set of measure 0.
| |
| | |
| A similar result holds in a bounded domain ''U'' with ''C''<sup>1</sup> boundary. In this case,
| |
| :<math>\|u\|_{C^{0,\gamma}(U)}\leq C \|u\|_{W^{1,p}(U)}</math>
| |
| where the constant ''C'' depends now on ''n'', ''p'' and ''U''. This version of the inequality follows from the previous one by applying the norm-preserving extension of ''W''<sup>1,''p''</sup>(''U'') to ''W''<sup>1,''p''</sup>('''R'''<sup>''n''</sup>).
| |
| | |
| ==General Sobolev inequalities==
| |
| Let ''U'' be a bounded open subset of ''R''<sup>''n''</sup>, with a ''C''<sup>1</sup> boundary. (''U'' may also be unbounded, but in this case its boundary, if it exists, must be sufficiently well-behaved.) Assume ''u'' ∈ ''W''<sup>''k'',''p''</sup>(''U'').
| |
| | |
| (i) If
| |
| :<math>k<\frac{n}{p}</math>
| |
| then <math>u\in L^q(U)</math>, where
| |
| :<math>\frac{1}{q}=\frac{1}{p}-\frac{k}{n}.\ </math>
| |
| We have in addition the estimate
| |
| :<math>\|u\|_{L^q(U)}\leq C \|u\|_{W^{k,p}(U)}</math>,
| |
| the constant ''C'' depending only on ''k'', ''p'', ''n'', and ''U''.
| |
| | |
| (ii) If
| |
| :<math>k>\frac{n}{p}</math>
| |
| then ''u'' belongs to the [[Hölder space]] <math> C^{k-[n/p]-1,\gamma}(U)\,</math>, where
| |
| :<math>\gamma=\left[\frac{n}{p}\right]+1-\frac{n}{p}</math> if n/p is not an integer, or
| |
| :γ is any positive number < 1, if ''n''/''p'' is an integer
| |
| | |
| We have in addition the estimate
| |
| :<math>\|u\|_{C^{k-[n/p]-1,\gamma}(U)}\leq C \|u\|_{W^{k,p}(U)},</math>
| |
| the constant ''C'' depending only on ''k'', ''p'', ''n'', γ, and ''U''.
| |
| | |
| ==Case <math>p=n, k=1</math>==
| |
| If <math>u\in W^{1,n}(R^n)</math>, then <math>u</math> is a function of [[bounded mean oscillation]] and
| |
| :<math>\|u\|_{BMO}<C\|Du\|_{L^n(R^n)}</math>, for some constant ''C'' depending only on ''n''. | |
| This estimate is a corollary of the [[Poincaré inequality]].
| |
| | |
| ==Nash inequality==
| |
| The Nash inequality, introduced by {{harvs|first=John|last=Nash|authorlink=John Forbes Nash, Jr.|year=1958|txt}}, states that there exists a constant ''C'' > 0, such that for all ''u'' ∈ L<sup>1</sup>('''R'''<sup>''n''</sup>) ∩ W<sup>1,2</sup>('''R'''<sup>''n''</sup>),
| |
| | |
| :<math>\|u\|_{L^2(\mathbf{R}^n)}^{1+2/n}\leq C\|u\|_{L^1(\mathbf{R}^n)}^{2/n} \| Du\|_{L^2(\mathbf{R}^n)}.</math> | |
| | |
| The inequality follows from basic properties of the [[Fourier transform]]. Indeed, integrating over the complement of the ball of radius ρ,
| |
| | |
| {{NumBlk|:|<math>\int_{|x|\ge\rho} |\hat{u}(x)|^2\,dx \le \int_{|x|\ge\rho} \frac{x^2}{\rho^2}|\hat{u}(x)|^2\,dx\le \rho^{-2}\int_{\mathbf{R}^n}|D u|^2\,dx</math>|{{EquationRef|1}}}}
| |
| | |
| by [[Parseval's theorem]]. On the other hand, one has
| |
| :<math>|\hat{u}| \le \|u\|_{L^1}</math>
| |
| which, when integrated over the ball of radius ρ gives
| |
| {{NumBlk|:|<math>\int_{|x|\le\rho} |\hat{u}(x)|^2\,dx \le \rho^n\omega_n \|u\|_{L^1}^2</math>|{{EquationRef|2}}}}
| |
| where ω<sub>''n''</sub> is the volume of the [[n sphere|''n''-ball]]. Choosing ρ to minimize the sum of ({{EquationNote|1}}) and ({{EquationNote|2}}) and again applying Parseval's theorem <math>\scriptstyle{\|\hat{u}\|_{L^2} = \|u\|_{L^2}}</math> gives the inequality.
| |
| | |
| In the special case of ''n'' =1, the Nash inequality can be extended{{fact|date=July 2012}} to the ''L''<sup>''p''</sup> case, in which case it is a generalization of the Gagliardo-Nirenberg-Sobolev inequality {{harv|Brezis|1999}}. In fact, if ''I'' is a bounded interval, then for all 1 ≤ ''r'' < ∞ and all 1 ≤ ''q'' ≤ ''p'' < ∞ the following inequality holds
| |
| | |
| :<math>\| u\|_{L^p(I)}\le C\| u\|^{1-a}_{L^q(I)} \|u\|^a_{W^{1,r}(I)}</math>
| |
| | |
| where ''a'' is defined by
| |
| | |
| :<math>a\left(\frac{1}{q}-\frac{1}{r}+1\right)=\frac{1}{q}-\frac{1}{p}.</math>
| |
| | |
| ==References==
| |
| *{{citation|mr=0450957|last= Adams|first= Robert A. |title=Sobolev spaces|series=Pure and Applied Mathematics, |volume= 65.|publisher= Academic Press |publication-place= New York-London|year= 1975|pages= xviii+268|isbn=978-0-12-044150-1|unused_data=isbn status=May be invalid - please double check}}.
| |
| *{{Citation | last1=Aubin | first1=Thierry | title=Espaces de Sobolev sur les variétés riemanniennes | mr=0488125 | year=1976 | journal=Bulletin des Sciences Mathématiques. 2e Série | issn=0007-4497 | volume=100 | issue=2 | pages=149–173}}
| |
| *{{Citation | last1=Aubin | first1=Thierry | title=Nonlinear analysis on manifolds. Monge-Ampère equations | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] | isbn=978-0-387-90704-8 | mr=681859 | year=1982 | volume=252}}.
| |
| * {{citation|first=Haïm|last=Brezis|authorlink=Haïm Brezis|title=Analyse fonctionnelle : théorie et applications|publisher=[[Masson]]|location=Paris|year=1983|isbn=0-8218-0772-2}}
| |
| *{{citation|first=Lawrence|last=Evans|authorlink=Lawrence C. Evans| title=Partial Differential Equations | publisher=American Mathematical Society, Providence | year=1998 | isbn=0-8218-0772-2}}
| |
| * {{citation|first=Maz'ja|last=Vladimir G.|authorlink= Vladimir Maz'ja|title=Sobolev spaces|series=Springer Series in Soviet Mathematics|publisher=Springer-Verlag|publication-place=Berlin|year=1985}}, Translated from the Russian by T. O. Shaposhnikova.
| |
| *{{citation|last=Nash|first=J.|authorlink=John Forbes Nash, Jr.|title=Continuity of solutions of parabolic and elliptic equations|journal=Amer. J. Math.|volume=80|year=1958|pages=931–954|doi=10.2307/2372841|jstor=2372841|issue=4|publisher=American Journal of Mathematics, Vol. 80, No. 4}}.
| |
| *{{springer|id=i/i050230|title=Imbedding theorems|first=S.M.|last= Nikol'skii}}
| |
| * {{citation|first=Elias|last=Stein|authorlink=Elias Stein|title=Singular integrals and differentiability properties of functions|publisher=[[Princeton University Press]]|location=Princeton, NJ|year=1970|isbn=0-691-08079-8}}
| |
| | |
| [[Category:Inequalities]]
| |
| [[Category:Sobolev spaces]]
| |
| [[Category:Compactness theorems]]
| |