Method of matched asymptotic expansions: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Michael Hardy
No edit summary
Accuracy: that function isn't y(1) anyway, not sure why it was there
 
Line 1: Line 1:
{{{{{1}}}|{{{2}}}|
Alyson is the title people use to call me and I think it seems fairly good when you say it. Office supervising is exactly where my primary earnings comes from but I've usually needed my personal company. To play lacross is some thing I truly appreciate performing. Ohio is exactly where my house is but my husband desires us to move.<br><br>my web blog: [http://netwk.hannam.ac.kr/xe/data_2/85669 free psychic]
 
|dtT-name=Triakis tetrahedron|dtT-image=triakistetrahedron.jpg|dtT-image2=triakistetrahedron.jpg|dtT-image3=triakistetrahedron.gif|dtT-dimage=Truncated tetrahedron.png|dtT-netimage=triakistetrahedron_net.png|
|dtT-Cox={{CDD|node_f1|3|node_f1|3|node}}
|dtT-V=8|dtT-E=18|dtT-F=12|dtT-Vdetail=4{3}+4{6}|dtT-chi=2|
|dtT-ffig=V3.6.6|dtT-ftype=isosceles triangle
|dtT-group=[[Tetrahedral symmetry|T<sub>d</sub>]], A<sub>3</sub>, [3,3], (*332)|
|dtT-rotgroup=T, [3,3]<sup>+</sup>, (332)|
|dtT-dual=Truncated tetrahedron|dtT-dihedral=129° 31' 16"<BR><math>\arccos(-\frac{7}{11})</math>|
|dtT-special=
 
|dtC-name=Triakis octahedron|dtC-image=triakisoctahedron.jpg|dtC-image2=triakisoctahedron.jpg|dtC-image3=triakisoctahedron.gif|dtC-dimage=Truncated hexahedron.png|dtC-netimage=triakisoctahedron_net.png|
|dtC-Cox={{CDD|node_f1|4|node_f1|3|node}}
|dtC-V=14|dtC-E=36|dtC-F=24|dtC-Vdetail=8{3}+6{8}|dtC-chi=2|
|dtC-ffig=V3.8.8|dtC-ftype=isosceles triangle
|dtC-group=[[Octahedral symmetry|O<sub>h</sub>]], BC<sub>3</sub>, [4,3], (*432)|
|dtC-rotgroup=O, [4,3]<sup>+</sup>, (432)|
|dtC-dual=Truncated cube|dtC-dihedral=147° 21' 0"<BR><math> \arccos ( -\frac{3 + 8\sqrt{2}}{17} ) </math>|
|dtC-special=
 
|dtO-name=Tetrakis hexahedron|dtO-image=tetrakishexahedron.jpg|dtO-image2=tetrakishexahedron.jpg|dtO-image3=tetrakishexahedron.gif|dtO-dimage=Truncated octahedron.png|dtO-netimage=tetrakishexahedron_net.png|
|dtO-Cox={{CDD|node_f1|3|node_f1|4|node}}
|dtO-V=14|dtO-E=36|dtO-F=24|dtO-Vdetail=6{4}+8{6}|dtO-chi=2|
|dtO-ffig=V4.6.6|dtO-ftype=isosceles triangle
|dtO-group=[[Octahedral symmetry|O<sub>h</sub>]], BC<sub>3</sub>, [4,3], (*432)|
|dtO-rotgroup=O, [4,3]<sup>+</sup>, (432)|
|dtO-dual=Truncated octahedron|dtO-dihedral=143° 7' 48"<BR><math> \arccos ( -\frac{4}{5} ) </math>|
|dtO-special=
 
|dtD-name=Triakis icosahedron|dtD-image=triakisicosahedron.jpg|dtD-image2=triakisicosahedron.jpg|dtD-image3=triakisicosahedron.gif|dtD-dimage=Truncated dodecahedron.png|dtD-netimage=triakisicosahedron_net.png|
|dtD-Cox={{CDD|node_f1|5|node_f1|3|node}}
|dtD-V=32|dtD-E=90|dtD-F=60|dtD-Vdetail=20{3}+12{10}|dtD-chi=2|
|dtD-ffig=V3.10.10|dtD-ftype=isosceles triangle
|dtD-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532)|
|dtD-rotgroup=I, [5,3]<sup>+</sup>, (532)|
|dtD-dual=Truncated dodecahedron|dtD-dihedral=160° 36' 45"<BR><math> \arccos ( -\frac{24 + 15\sqrt{5}}{61} ) </math>|
|dtD-special=
 
|dtI-name=Pentakis dodecahedron|dtI-image=pentakisdodecahedron.jpg|dtI-image2=pentakisdodecahedron.jpg|dtI-image3=pentakisdodecahedron.gif|dtI-dimage=Truncated icosahedron.png|dtI-netimage=pentakisdodecahedron_net.png|
|dtI-Cox={{CDD|node_f1|3|node_f1|5|node}}
|dtI-V=32|dtI-E=90|dtI-F=60|dtI-Vdetail=20{6}+12{5}|dtI-chi=2|
|dtI-ffig=V5.6.6|dtI-ftype=isosceles triangle
|dtI-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532)|
|dtI-rotgroup=I, [5,3]<sup>+</sup>, (532)|
|dtI-dual=Truncated icosahedron|dtI-dihedral=156° 43' 7"<BR><math> \arccos ( -\frac{80 + 9\sqrt{5}}{109} ) </math>|
|dtI-special=
 
|dCO-name=Rhombic dodecahedron|dCO-image=rhombicdodecahedron.jpg|dCO-image2=rhombicdodecahedron.jpg|dCO-image3=rhombicdodecahedron.gif|dCO-dimage=cuboctahedron.png|dCO-netimage=rhombicdodecahedron_net.svg|
|dCO-Cox={{CDD|node_f1|3|node|3|node_f1}}<BR>{{CDD|node|4|node_f1|3|node}}
|dCO-V=14|dCO-E=24|dCO-F=12|dCO-Vdetail=8{3}+6{4}|dCO-chi=2|
|dCO-ffig=V3.4.3.4|dCO-ftype=rhombus
|dCO-group=[[Octahedral symmetry|O<sub>h</sub>]], BC<sub>3</sub>, [4,3], (*432)|
|dCO-rotgroup=O, [4,3]<sup>+</sup>, (432)|
|dCO-dual=Cuboctahedron|dCO-dihedral=120°|
|dCO-special=[[edge-transitive]], [[zonohedron]]
 
|dID-name=Rhombic triacontahedron|dID-image=rhombictriacontahedron.png|dID-image2=rhombictriacontahedron.svg|dID-image3=rhombictriacontahedron.gif|dID-dimage=icosidodecahedron.svg|dID-netimage=rhombictriacontahedron net.svg|
|dID-Cox={{CDD|node|5|node_f1|3|node}}
|dID-V=32|dID-E=60|dID-F=30|dID-Vdetail=20{3}+12{5}|dID-chi=2|
|dID-ffig=V3.5.3.5|dID-ftype=rhombus
|dID-group=[[Icosahedral symmetry|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532)|
|dID-rotgroup=I, [5,3]<sup>+</sup>, (532)|
|dID-dual=Icosidodecahedron|dID-dihedral=144°|
|dID-special=[[edge-transitive]], [[zonohedron]]
 
|dSD-name=Pentagonal hexecontahedron|dSD-image=Pentagonalhexecontahedron.jpg|dSD-image2=Pentagonalhexecontahedron.jpg|dSD-image3=Pentagonalhexecontahedronccw.gif|dSD-dimage=Snub_dodecahedron_ccw.png|dSD-netimage=Pentagonalhexecontahedron net.png|
|dSD-Cox={{CDD|node_fh|5|node_fh|3|node_fh}}
|dSD-V=92|dSD-E=150|dSD-F=60|dSD-Vdetail=12 {5}<BR>20+60 {3}|dSD-chi=2|
|dSD-ffig=V3.3.3.3.5|dSD-ftype=irregular [[pentagon]]
|dSD-group=[[Icosahedral symmetry|I]], ½H<sub>3</sub>, [5,3]<sup>+</sup>, (532)|
|dSD-rotgroup=I, [5,3]<sup>+</sup>, (532)|
|dSD-dual=Snub dodecahedron|dSD-dihedral=153° 10' 43"|
|dSD-special=[[Chirality (mathematics)|chiral]]
 
}}<noinclude>[[Category:Polyhedra templates]]</noinclude>

Latest revision as of 04:31, 19 August 2014

Alyson is the title people use to call me and I think it seems fairly good when you say it. Office supervising is exactly where my primary earnings comes from but I've usually needed my personal company. To play lacross is some thing I truly appreciate performing. Ohio is exactly where my house is but my husband desires us to move.

my web blog: free psychic