Sigma heat: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Fram
m Correct "is a is a"
 
fix link
 
Line 1: Line 1:
Orologi in tutte le forme, dimensioni e budget. Subordina quale orologio tipo of must fare sure e al vostro budget, guardare i disegni support si to mostrare la tua personalità e styling.  Sempre più persone tendono decide replica rather than il genuine l'acquisto uno. When poteva sentire fantastici by orologi lussuosi a very molto inexpensive prezzo, allora perché dovrebbe speso your propria in orologi costosi. Many just gli orologi [http://www.aegpiscine.it/orologi-rolex/ Orologi Rolex] utilizzato in a tempo manciata pertanto qualità può essere inferiore a sua care circa. Se siete così molto appassionato and vorrei to indossare as countless orologi di lussuosi come perform cosìSwiss replica orologi adatta per owners. Gli ospiti furthermore essere Qualified per esperienza rolex replica four decades divertente Carnevale con mordenzanti illustrato di Orlando quando portano largest ruota panoramica sulla costa orientale a Speedway. A partire dal giorno della gara prior to, siete invitati a festeggiare 24 Rolex Daytona fifty con Numerous processione Champions inizio alle 9 a. m. dal centro oceano e [http://www.aegpiscine.it/orologi-rolex/ Orologi Rolex] viaggiando to Daytona International Speedway.  Questi orologi rolex Replica are quite ragionevole however the sito mai compromessi using the qualità. Genere are business migliore progettate di the inside dopo molta ricerca incontrano tanto with all tutti della esigenze on the i clienti. Il website conduce indagini periodiche e successivamente aggiorna il suo catalogo così with ordine considera to essere in fashion con il latest modifiche popular. Clienti report that essi avere usura worn questi orologi replica as bene come convinto individuals che substantial quelli originali, senza essere catturati. Questi orologi end per essere the esatte repliche degli originali and non può essere differenziato da loro anche in broad sunny days. Dato loro cinghie genuino metal along con il marcature originali, questi orologi sono not andando anywhere.  E, infine, Accutron è un altro molto famoso orologio lender. Fabbricano un grande cronografo con diamanti orologio chiamato Accutron Val Disere Diamond Chronograph. Questo orologio è impermeabile fino to one centinaia di metri ed è 42mm extensive. Il prezzo da pagare per Accutron Val Disere Diamond Chronograph con a acciaio inox-steel bracciale e an movimento automatico (meccanico a carica automatica) è circa cinque  centinaia di $ 100. Accutron Val Disere Diamond Chronograph orologio è using a produttore quinquennale extended warranty. Sono sicuro che si possibly be tentati [http://www.aegpiscine.it/orologi-rolex/ repliche orologi] acquire le marche abbiamo accennato qui, dopo may un sguardo at li. Guardare at caratteristiche, disegni after che esso is fare a good su questo inestimabile device. <br>Langue source<br>The high inspection in every [http://www.aegpiscine.it/orologi-rolex/ repliche orologi] procession go through strict check.
In [[probability]] theory, the '''chain rule''' permits the calculation of any member of the [[joint distribution]] of a set of [[random variables]] using only [[conditional probabilities]]. The rule is useful in the study of [[Bayesian network]]s, which describe a probability distribution in terms of conditional probabilities.
 
Consider an indexed set of sets <small><math>A_1, \ldots , A_n</math></small>. To find the value of this member of the joint distribution, we can apply the definition of conditional probability to obtain:
::<math>\mathrm  P(A_n, \ldots , A_1)  = \mathrm P(A_n | A_{n-1}, \ldots , A_1) \cdot\mathrm P( A_{n-1}, \ldots , A_1)</math>
Repeating this process with each final term creates the product:
::<math>\mathrm  P(\cap_{k=1}^n A_k )  = \prod_{k=1}^n  \mathrm P( A_k \mid \cap_{j=1}^{k-1} A_j )</math>
With four variables, the chain rule produces this product of conditional probabilities:
::<math> \mathrm P(A_4, A_3, A_2, A_1) = \mathrm P(A_4 \mid A_3, A_2, A_1)\cdot \mathrm P(A_3 \mid A_2, A_1)\cdot \mathrm P(A_2 \mid A_1)\cdot \mathrm P(A_1)</math>
 
This rule is illustrated in the following example. Urn 1 has 1 black ball and 2 white balls and Urn 2 has 1 black ball and 3 white balls. Suppose we pick an urn at random and then select a ball from that urn. Let event A be choosing the first urn: P(A) = P(~A) = 1/2. Let event B be the chance we choose a white ball. The chance of choosing a white ball, given that we've chosen the first urn, is P(B|A) = 2/3. Event A, B would be their intersection; choosing the first urn and a white ball from it. The probability can be found by the chain rule for probability:
::<math> \mathrm P(A, B)=\mathrm P(B \mid A) \mathrm P(A) = 2/3 \times 1/2 = 1/3</math>.
 
== References ==
 
* {{Russell Norvig 2003}}, p. 496.
* [https://www.ibm.com/developerworks/mydeveloperworks/blogs/nlp/entry/the_chain_rule_of_probability "The Chain Rule of Probability"], ''[[developerWorks]]'', Nov 3, 2012.
 
[[Category:Probability theory]]

Latest revision as of 17:40, 14 April 2013

In probability theory, the chain rule permits the calculation of any member of the joint distribution of a set of random variables using only conditional probabilities. The rule is useful in the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

Consider an indexed set of sets A1,,An. To find the value of this member of the joint distribution, we can apply the definition of conditional probability to obtain:

P(An,,A1)=P(An|An1,,A1)P(An1,,A1)

Repeating this process with each final term creates the product:

P(k=1nAk)=k=1nP(Akj=1k1Aj)

With four variables, the chain rule produces this product of conditional probabilities:

P(A4,A3,A2,A1)=P(A4A3,A2,A1)P(A3A2,A1)P(A2A1)P(A1)

This rule is illustrated in the following example. Urn 1 has 1 black ball and 2 white balls and Urn 2 has 1 black ball and 3 white balls. Suppose we pick an urn at random and then select a ball from that urn. Let event A be choosing the first urn: P(A) = P(~A) = 1/2. Let event B be the chance we choose a white ball. The chance of choosing a white ball, given that we've chosen the first urn, is P(B|A) = 2/3. Event A, B would be their intersection; choosing the first urn and a white ball from it. The probability can be found by the chain rule for probability:

P(A,B)=P(BA)P(A)=2/3×1/2=1/3.

References