|
|
Line 1: |
Line 1: |
| {{Differential equations}}
| | The writer's name is Andera and she believes it sounds quite good. My working day occupation is a journey agent. The preferred pastime for him and his kids is to perform lacross and he'll be starting some thing else alongside with it. Some time ago she selected to live in Alaska and her parents reside nearby.<br><br>My site ... [http://clothingcarearchworth.com/index.php?document_srl=441551&mid=customer_review best psychic readings] |
| | |
| In [[mathematics]], '''delay differential equations''' ('''DDEs''') are a type of [[differential equation]] in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times.
| |
| | |
| A general form of the time-delay differential equation for <math>x(t)\in \mathbb{R}^n</math> is
| |
| :<math>\frac{\rm d}{{\rm d}t}x(t)=f(t,x(t),x_t),</math>
| |
| where <math>x_t=\{x(\tau):\tau\leq t\}</math> represents the trajectory of the solution in the past. In this equation, <math>f</math> is a functional operator from
| |
| <math>\mathbb{R}\times \mathbb{R}^n\times C^1</math> to <math>\mathbb{R}^n.\,</math>
| |
| | |
| ==Examples==
| |
| * Continuous delay
| |
| ::<math>\frac{\rm d}{{\rm d}t}x(t)=f\left(t,x(t),\int_{-\infty}^0x(t+\tau)\,{\rm d}\mu(\tau)\right)</math>
| |
| * Discrete delay
| |
| ::<math>\frac{\rm d}{{\rm d}t}x(t)=f(t,x(t),x(t-\tau_1),\dotsc,x(t-\tau_m))</math> for <math>\tau_1>\dotsb>\tau_m\geq 0</math>.
| |
| * Linear with discrete delay
| |
| ::<math>\frac{\rm d}{{\rm d}t}x(t)=A_0x(t)+A_1x(t-\tau_1)+\dotsb+A_mx(t-\tau_m)</math>
| |
| :where <math>A_0,\dotsc,A_m\in \mathbb{R}^{n\times n}</math>.
| |
| * Pantograph equation
| |
| ::<math>\frac{\rm d}{{\rm d}t}x(t) = ax(t) + bx(\lambda t),</math>
| |
| :where ''a'', ''b'' and λ are constants and 0 < λ < 1. This equation and some more general forms are named after the [[pantograph (rail)|pantograph]]s on trains.
| |
| | |
| ==Solving DDEs==
| |
| DDEs are mostly solved in a stepwise fashion with a principle called the method of steps. For instance, consider the DDE with a single delay
| |
| | |
| ::<math>\frac{\rm d}{{\rm d}t}x(t)=f(x(t),x(t-\tau))</math>
| |
| | |
| with given initial condition <math>\phi\colon [-\tau,0]\rightarrow \mathbb{R}^n</math>. Then the solution on the interval <math>[0,\tau]</math> is given by <math>\psi(t)</math> which is the solution to the inhomogeneous [[initial value problem]]
| |
| | |
| ::<math>\frac{\rm d}{{\rm d}t}\psi(t)=f(\psi(t),\phi(t-\tau))</math>,
| |
| | |
| with <math>\psi(0)=\phi(0)</math>. This can be continued for the successive intervals by using the solution to the previous interval as inhomogeneous term. In practice, the initial value problem is often solved numerically.
| |
| | |
| ===Example===
| |
| Suppose <math>f(x(t),x(t-\tau))=ax(t-\tau)</math> and <math>\phi(t)=1</math>. Then the initial value problem can be solved with integration,
| |
| | |
| ::<math>x(t)=a\int_{s=0}^t \phi(s-\tau)\,{\rm d}s+C</math>,
| |
| | |
| i.e., <math>x(t)=at+1</math>, where we picked <math>C=1</math> to fit the initial condition <math>x(0)=\phi(0)</math>. Similarly, for the interval
| |
| <math>t\in[\tau,2\tau]</math> we integrate and fit the initial condition to find that <math>x(t)=at^2/2+t+D</math> where <math>D=(a-1)\tau+1-a\tau^2/2</math>.
| |
| | |
| ==Reduction to ODE==
| |
| In some cases, delay differential equations are equivalent to a system of non-delay [[differential equation]]s.
| |
| * '''Example 1''' Consider an equation
| |
| ::<math>
| |
| \frac{\rm d}{{\rm d}t}x(t)=f\left(t,x(t),\int_{-\infty}^0x(t+\tau)e^{\lambda\tau}\,{\rm d}\tau\right).
| |
| </math>
| |
| | |
| :Introduce <math>y(t)=\int_{-\infty}^0x(t+\tau)e^{\lambda\tau}\,{\rm d}\tau</math> to get a system of ODEs
| |
| ::<math>
| |
| \frac{\rm d}{{\rm d}t}x(t)=f(t,x,y),\quad \frac{\rm d}{{\rm d}t}y(t)=x-\lambda y.
| |
| </math>
| |
| | |
| * '''Example 2''' An equation
| |
| ::<math>
| |
| \frac{\rm d}{{\rm d}t}x(t)=f\left(t,x(t),\int_{-\infty}^0x(t+\tau)\cos(\alpha\tau+\beta)\,{\rm d}\tau\right)
| |
| </math>
| |
| | |
| :is equivalent to
| |
| ::<math>
| |
| \frac{\rm d}{{\rm d}t}x(t)=f(t,x,y),\quad \frac{\rm d}{{\rm d}t}y(t)=\cos(\beta)x+\alpha z,\quad \frac{\rm d}{{\rm d}t}z(t)=\sin(\beta) x-\alpha y,
| |
| </math>
| |
| | |
| :where
| |
| ::<math>
| |
| y=\int_{-\infty}^0x(t+\tau)\cos(\alpha\tau+\beta)\,{\rm d}\tau,\quad z=\int_{-\infty}^0x(t+\tau)\sin(\alpha\tau+\beta)\,{\rm d}\tau.
| |
| </math>
| |
| | |
| ==The characteristic equation==
| |
| | |
| Similar to [[ordinary differential equation|ODE]]s, many properties of linear DDEs can be characterized and analyzed using the [[characteristic equation (calculus)|characteristic equation]].<ref>[[#refMichiels2007|Michiels, Niculescu, 2007]] Chapter 1</ref>
| |
| The characteristic equation associated with the linear DDE with discrete delays
| |
| ::<math>\frac{\rm d}{{\rm d}t}x(t)=A_0x(t)+A_1x(t-\tau_1)+\dotsb+A_mx(t-\tau_m)</math>
| |
| is
| |
| ::<math>{\rm det}(-\lambda I+A_0+A_1e^{-\tau_1\lambda}+\dotsb+A_me^{-\tau_m\lambda})=0</math>.
| |
| | |
| The roots λ of the characteristic equation are called characteristic roots or eigenvalues and the solution set is often referred to as the spectrum. Because of the exponential in the characteristic equation, the DDE has, unlike the ODE case, an infinite number of eigenvalues, making a [[spectral theory|spectral analysis]] more involved. The spectrum does however have a some properties which can be exploited in the analysis. For instance, even though there are an infinite number of eigenvalues, there are only a finite number of eigenvalues to the right of any vertical line in the complex plane.{{citation needed|date=July 2013}}
| |
| | |
| This characteristic equation is a [[nonlinear eigenproblem]] and there are many methods to compute the spectrum numerically.<ref>[[#refMichiels2007|Michiels, Niculescu, 2007]]Chapter 2</ref> In some special situations it is possible to solve the characteristic equation explicitly. Consider, for example, the following DDE:
| |
| :<math>\frac{\rm d}{{\rm d}t}x(t)=-x(t-1).</math>
| |
| The characteristic equation is
| |
| :<math>-\lambda-e^{-\lambda}=0.\,</math>
| |
| There are an infinite number of solutions to this equation for complex λ. They are given by
| |
| :<math>\lambda=W_k(-1)</math>,
| |
| where ''W''<sub>''k''</sub> is the ''k''th branch of the [[Lambert W function]].
| |
| | |
| ==Software==
| |
| | |
| In [[MATLAB]], the function [http://www.mathworks.com/help/matlab/ref/dde23.html dde23] can be used to numerically solve delay differential equations.<ref>{{cite doi|10.1016/S0168-9274(00)00055-6}}</ref>
| |
| | |
| == Notes ==
| |
| {{reflist}}
| |
| | |
| == References ==
| |
| {{Refbegin}}
| |
| *{{cite book |last=Bellman |first=Richard |last2=Cooke |first2=Kenneth L. |title=Differential-difference equations |publisher=Academic Press | location=New York-London | year=1963 | isbn=978-0-12-084850-8}}
| |
| *{{cite book |authorlink=Rod Driver |last=Driver |first=Rodney D. |year=1977 |title=Ordinary and Delay Differential Equations |publisher=Springer Verlag |location=New York |isbn=0-387-90231-7 }}
| |
| *{{cite book | author=Michiels, Wim and Niculescu, Silviu-Iulian | title=Stability and stabilization of time-delay systems. An eigenvalue based approach | year=2007 | isbn=978-0-89871-632-0 | ref=refMichiels2007}}
| |
| {{Refend}}
| |
| | |
| ==External links==
| |
| * {{scholarpedia|title=Delay-Differential Equations|urlname=Delay-Differential_Equations|curator=Skip Thompson}}
| |
| | |
| [[Category:Differential equations]]
| |
The writer's name is Andera and she believes it sounds quite good. My working day occupation is a journey agent. The preferred pastime for him and his kids is to perform lacross and he'll be starting some thing else alongside with it. Some time ago she selected to live in Alaska and her parents reside nearby.
My site ... best psychic readings