Aeroacoustics: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Addbot
m Bot: Migrating 6 interwiki links, now provided by Wikidata on d:q381331 (Report Errors)
en>Cesarlegendre
No edit summary
 
Line 1: Line 1:
In [[mathematics]], the '''Heawood number''' of a [[surface]] is a certain [[upper bound]] for the maximal number of colors needed to color any [[graph (mathematics)|graph]] [[embedding|embedded]] in the surface.  
span.mwe-math-mathml-inline, div.mwe-math-mathml-display {
 
    display: none !important;
In 1890 Heawood proved for all surfaces ''except'' the [[sphere]] that no more than
}
 
span.mwe-math-mathml-inline + .mwe-math-fallback-image-inline {
:<math> H(S)=\left\lfloor\frac{7+\sqrt{49-24 e(S)}}{2}\right\rfloor</math>
    display: inline !important;
colors are needed to color any graph embedded in a surface of [[Euler characteristic]] <math>e(S)</math>. The case of the sphere is the [[four-color conjecture]] which was settled by [[Kenneth Appel]] and [[Wolfgang Haken]] in 1976. The number <math>H(S)</math> became known as Heawood number in 1976.  
}
 
div.mwe-math-mathml-display + .mwe-math-fallback-image-display {
Franklin proved that the [[chromatic number]] of a graph embedded in the [[Klein bottle]] can be as large as <math>6</math>, but never exceeds <math>6</math>. Later it was proved in the works of [[Gerhard Ringel]] and J. W. T. Youngs that the [[complete graph]] of <math>H(S)</math> vertices can be embedded in the surface <math>S</math> unless <math>S</math> is the [[Klein bottle]]. This established that Heawood's bound could not be improved.
    display: block !important;
 
}
For example, the complete graph on <math>7</math> vertices can be embedded in the [[torus]] as follows:
 
[[Image:Heawood number.png]]
 
==References==
* [[Béla Bollobás|Bollobás, Béla]], ''Graph Theory: An Introductory Course'', volume 63 of GTM, Springer-Verlag, 1979. [http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0463.05041 Zbl 0411.05032].
* [[Thomas L. Saaty|Saaty, Thomas L.]] and [[Paul Chester Kainen|Kainen, Paul C.]]; ''The Four-Color Problem: Assaults and Conquest'', Dover, 1986. [http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0411.05032 Zbl 0463.05041].
 
{{PlanetMath attribution|id=3876|title=Heawood number}}
 
[[Category:Topological graph theory]]
[[Category:Graph coloring]]

Latest revision as of 10:29, 25 September 2014

span.mwe-math-mathml-inline, div.mwe-math-mathml-display {
    display: none !important;
}
span.mwe-math-mathml-inline + .mwe-math-fallback-image-inline {
    display: inline !important;
}
div.mwe-math-mathml-display + .mwe-math-fallback-image-display {
    display: block !important;
}