Shriek map: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Citation bot 1
m Citations: [Pu177]Tweaked: issue. You can use this bot yourself! Report bugs here.
 
en>BattyBot
changed {{Unreferenced}} to {{Refimprove}} & general fixes using AWB
Line 1: Line 1:
Im addicted to my hobby Travel. Appears boring? Not!<br>I also to learn Turkish in my spare time.<br><br>My page; [http://tinyurl.com/pch83be cheap ugg boots]
The '''Hamming scheme''', named after [[Richard Hamming]], is also known as the '''hyper-cubic association scheme''', and it is the most important example for [[coding theory]].<ref>P. Delsarte and V. I. Levenshtein, “Association schemes and coding theory,“ ''IEEE Trans. Inform. Theory'', vol. 44, no. 6, pp. 2477–2504, 1998.</ref><ref>P. Camion, "Codes and Association Schemes: Basic Properties of Association Schemes Relevant to Coding," in ''Handbook of Coding Theory'', V. S. Pless and W. C. Huffman, Eds., Elsevier, The Netherlands, 1998.</ref><ref>F. J. MacWilliams and N. J. A. Sloane, ''The Theory of Error-Correcting Codes'', Elsevier, New York, 1978.</ref> In this scheme <math>X=\mathcal{F}^n</math>, the set of binary vectors of length <math>n</math>, and two vectors <math>x</math>, <math>y\in \mathcal{F}^n</math> are <math>i</math>-th associates if they have [[Hamming distance]] <math>i</math> apart.
 
Recall that an [[association scheme]] is visualized as a [[complete graph]] with labeled edges. The graph has <math>v</math> vertices, one for each point of <math>X</math>, and the edge joining vertices <math>x</math> and <math>y</math> is labeled <math>i</math> if <math>x</math> and <math>y</math> are <math>i</math>-th associates. Each edge has a unique label, and the number of triangles with a fixed base labeled <math>k</math> having the other edges labeled <math>i</math> and <math>j</math> is a constant <math>c_{ijk}</math>, depending on <math>i,j,k</math> but not on the choice of the base. In particular, each vertex is incident with exactly <math>c_{ii0}=v_{i}</math> edges labeled <math>i</math>; <math>v_{i}</math> is the [[Adjacency relation|valency]] of the [[Relation (mathematics)|relation]] <math>R_{i}</math>.
The <math>c_{ijk}</math> in a '''Hamming scheme''' are given by
 
: <math>c_{ijk} = \begin{cases}
\dbinom{k}{\frac{i-j+k}{2}}\dbinom{n-k}{\frac{i+j-k}{2}}, & \text{if } i+j-k \text{ is even,}  \\
\;\;\;\;\;\;\;\;\;\;0\;\;\;\;\;\;\;\;\;\;\;,\;\; & \text{if } i+j-k \text{ is odd.}  \end{cases} </math>
 
Here, <math>v=\left|X\right|=2^{n}</math> and <math>v_{i}=\binom{n}{i}</math>. The [[Matrix (mathematics)|matrices]] in the [[Bose–Mesner algebra|Bose-Mesner algebra]] are <math>2^{n}\times 2^{n}</math> [[Matrix (mathematics)|matrices]], with rows and columns labeled by vectors <math>x\in \mathcal{F}^{n}</math>. In particular the <math>\left(x,y\right)</math>-th entry of <math>D_{k}</math> is <math>1</math> if and only if
<math>d_{H}(x,y)=k</math>.
 
==References==
{{reflist}}
 
{{DEFAULTSORT:Hamming Scheme}}
[[Category:Coding theory]]

Revision as of 04:37, 11 November 2013

The Hamming scheme, named after Richard Hamming, is also known as the hyper-cubic association scheme, and it is the most important example for coding theory.[1][2][3] In this scheme X=n, the set of binary vectors of length n, and two vectors x, yn are i-th associates if they have Hamming distance i apart.

Recall that an association scheme is visualized as a complete graph with labeled edges. The graph has v vertices, one for each point of X, and the edge joining vertices x and y is labeled i if x and y are i-th associates. Each edge has a unique label, and the number of triangles with a fixed base labeled k having the other edges labeled i and j is a constant cijk, depending on i,j,k but not on the choice of the base. In particular, each vertex is incident with exactly cii0=vi edges labeled i; vi is the valency of the relation Ri. The cijk in a Hamming scheme are given by

cijk={(kij+k2)(nki+jk2),if i+jk is even,0,if i+jk is odd.

Here, v=|X|=2n and vi=(ni). The matrices in the Bose-Mesner algebra are 2n×2n matrices, with rows and columns labeled by vectors xn. In particular the (x,y)-th entry of Dk is 1 if and only if dH(x,y)=k.

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  1. P. Delsarte and V. I. Levenshtein, “Association schemes and coding theory,“ IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2477–2504, 1998.
  2. P. Camion, "Codes and Association Schemes: Basic Properties of Association Schemes Relevant to Coding," in Handbook of Coding Theory, V. S. Pless and W. C. Huffman, Eds., Elsevier, The Netherlands, 1998.
  3. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier, New York, 1978.