|
|
Line 1: |
Line 1: |
| [[Image:Flammability diagram methane.png|right|thumb|250px|[[Flammability diagram]] for [[methane]]]]
| |
| {{refimprove|date=January 2014}}
| |
| A '''ternary plot''', '''ternary graph''', '''triangle plot''', '''simplex plot''', or '''de Finetti diagram''' is a [[barycentric coordinates (mathematics)|barycentric]] [[plot (graphics)|plot]] on three variables which sum to a constant. It graphically depicts the ratios of the three variables as positions in an [[equilateral]] [[triangle]]. It is used in [[physical chemistry]], [[petrology]], [[mineralogy]], [[metallurgy]], and other physical sciences to show the compositions of systems composed of three species. In [[population genetics]], it is often called a Gibbs triangle or a [[de Finetti diagram]]. In [[game theory]], it is often called a ''[[simplex]] plot''.{{Citation needed|date=May 2011}}
| |
|
| |
|
| [[Image:Ag-Au-Cu-colours-english.svg|right|thumb|200px|Approximate colours of Ag–Au–Cu alloys in jewellery making]]
| |
|
| |
|
| In a ternary plot, the proportions of the three variables ''a'', ''b'', and ''c'' must sum to some constant, ''K''. Usually, this constant is represented as 1.0 or 100%. Because ''a'' + ''b'' + ''c'' = ''K'' for all substances being graphed, any one variable is not independent of the others, so only two variables must be known to find a sample's point on the graph: for instance, ''c'' must be equal to ''K'' − ''a'' − ''b''. Because the three proportions cannot vary independently - there are only two [[Degrees of freedom (statistics)|degrees of freedom]] - it is possible to graph the intersection of all three variables in only two dimensions.{{Citation needed|date=May 2011}}
| | The other day I woke up and realized - lukebrya ([http://www.ladyhawkshockey.org Learn Even more Here]) I have been single for some time today and after much bullying from buddies I today find myself signed up for web luke bryan thats my kinda night tour ([http://lukebryantickets.sgs-suparco.org lukebryantickets.sgs-suparco.org]) dating. They guaranteed me that there are a lot of interesting, sweet and [http://ordinaryvisitors.org/ ordinary visitors] to meet up, so the pitch is gone by here!<br>I strive to keep as toned as [http://www.encyclopedia.com/searchresults.aspx?q=potential+coming potential coming] to the gym several times per week. I love my sports and try to play or see as several a potential. I am going to often at Hawthorn suits being wintertime. Notice: If you really considered shopping a sport I really do not brain, I've noticed the carnage of wrestling fits at stocktake revenue.<br>My buddies [http://www.ffpjp24.org luke bryan concert tour schedule] and household are wonderful and hanging out together at pub gigs or dinners is definitely critical. As I find that you can do not get a nice dialog with the sound I have never been in to cabarets. Additionally, I got two unquestionably cheeky and quite cunning dogs that are almost always eager to meet up fresh people.<br><br>Feel free to visit my web-site ... [http://lukebryantickets.hamedanshahr.com cheap event tickets] |
| | |
| ==Reading values on the ternary plot==
| |
| The advantage of using a ternary plot for depicting compositions is that three variables can be conveniently plotted in a two-dimensional graph. Ternary plots can also be used to create phase diagrams by outlining the composition regions on the plot where different phases exist.
| |
| | |
| Every point on a ternary plot represents a different composition of the three components. There are three common methods used to determine the ratios of the three species in the composition. The first method is an estimation based upon the phase diagram grid. The concentration of each species is 100% (pure phase) in its corner of the triangle and 0% at the line opposite it. The percentage of a specific species decreases linearly with increasing distance from this corner, as seen in figures 3–8. By drawing parallel lines at regular intervals between the zero line and the corner (as seen in the images), fine divisions can be established for easy estimation of the content of a species. For a given point, the fraction of each of the three materials in the composition can be determined by the first.
| |
| | |
| For phase diagrams that do not possess grid lines, the easiest way to determine the composition is to set the altitude of the triangle to 100% and determine the shortest distances from the point of interest to each of the three sides. The distances (the ratios of the distances to the total height of 100%) give the content of each of the species, as shown in figure 1.
| |
| | |
| The third method is based upon a larger number of measurements, but does not require the drawing of perpendicular lines. Straight lines are drawn from each corner, through the point of interest, to the corresponding side of the triangle. The lengths of these lines, as well as the lengths of the segments between the point and the corresponding sides, are measured individually. Ratios can then be determined by dividing these segments by the entire corresponding line as shown in the figure 2. (The sum of the ratios should add to 1).
| |
| | |
| <gallery widths="300" heights="229">
| |
| image:HowToCalculatePercentCompositions Altitude Method.gif|Figure 1. Altitude method
| |
| image:HowToCalculate%Compositions Intersection Method.gif|Figure 2. Intersection method
| |
| image:ternary.example.1.svg|Figure 3. An example ternary diagram, without any points plotted.
| |
| image:ternary.example.axis.1.jpg|Figure 4. An example ternary diagram, showing increments along the first axis.
| |
| image:ternary.example.axis.2.jpg|Figure 5. An example ternary diagram, showing increments along the second axis.
| |
| image:ternary.example.axis.3.jpg|Figure 6. An example ternary diagram, showing increments along the third axis.
| |
| image:Ternary plot 1.png|Figure 7. Empty diagram
| |
| image:Ternary plot 2 (reverse axis).png|Figure 8. Empty diagram (alternative axis)
| |
| image:Ternary plot.svg|Figure 9.
| |
| </gallery>
| |
| | |
| ==Derivation from Cartesian coordinates== | |
| [[File:ternary plot visualisation.svg|thumb|400px|Derivation of a ternary plot from Cartesian coordinates]]
| |
| Figure (1) shows an [[oblique projection]] of point P(''a'',''b'',''c'') in a 3-dimensional [[Cartesian space]] with axes a, b and c, respectively.
| |
| | |
| If ''a'' + ''b'' + ''c'' = ''K'' (a positive constant), P is restricted to a plane containing A(''K'',0,0), B(0,''K'',0) and C(0,0,''K''). If ''a'', ''b'' and ''c'' each cannot be negative, P is restricted to the triangle bounded by A, B and C, as in (2).
| |
| | |
| In (3), the axes are rotated to give an [[isometric]] view. The triangle, viewed face-on, appears [[equilateral]].
| |
| | |
| In (4), the distances of P from lines BC, AC and AB are denoted by ''a' '', ''b' '' and ''c' '', respectively.
| |
| | |
| For any line '''l''' = '''s''' + ''t'' '''n̂''' in vector form ('''n̂''' is a unit vector) and a point '''p''', the [[distance from a point to a line|perpendicular distance]] from '''p''' to '''l''' is <math>\| (\mathbf{s}-\mathbf{p}) - ((\mathbf{s}-\mathbf{p}) \cdot \mathbf{\hat{n}})\mathbf{\hat{n}} \|</math> .
| |
| | |
| In this case, point P is at
| |
| <math>\mathbf{p} = \begin{pmatrix}a\\b\\c\end{pmatrix}</math> .
| |
| | |
| Line BC has
| |
| <math>\mathbf{s} = \begin{pmatrix}0\\K\\0\end{pmatrix}</math> and
| |
| <math>\mathbf{\hat{n}} = \frac{\Big(\begin{smallmatrix}0\\K\\0\end{smallmatrix}\Big) - \Big(\begin{smallmatrix}0\\0\\K\end{smallmatrix}\Big)}{\Big|\Big|\Big(\begin{smallmatrix}0\\K\\0\end{smallmatrix}\Big) - \Big(\begin{smallmatrix}0\\0\\K\end{smallmatrix}\Big)\Big|\Big|} = \frac{\Big(\begin{smallmatrix}0\\K\\-K\end{smallmatrix}\Big)}{\sqrt{0^2+K^2+(-K)^2}} = \begin{pmatrix}0\\\;\;1/\sqrt{2}\\-1/\sqrt{2}\end{pmatrix}</math> .
| |
| | |
| Using the perpendicular distance formula,
| |
| | |
| <math>\begin{align}
| |
| a' & = \bigg|\bigg| \Big(\begin{smallmatrix}-a\\K-b\\-c\end{smallmatrix}\Big) - \bigg( \Big(\begin{smallmatrix}-a\\K-b\\-c\end{smallmatrix}\Big) \cdot \Big(\begin{smallmatrix}0\\\;\;1/\sqrt{2}\\-1/\sqrt{2}\end{smallmatrix}\Big) \bigg) \Big(\begin{smallmatrix}0\\\;\;1/\sqrt{2}\\-1/\sqrt{2}\end{smallmatrix}\Big) \bigg|\bigg| \\ | |
| & = \bigg|\bigg| \Big(\begin{smallmatrix}-a\\K-b\\-c\end{smallmatrix}\Big) - \Big( 0 + \tfrac{K-b}{\sqrt{2}} + \tfrac{c}{\sqrt{2}} \Big) \Big(\begin{smallmatrix}0\\\;\;1/\sqrt{2}\\-1/\sqrt{2}\end{smallmatrix}\Big) \bigg|\bigg| \\
| |
| & = \bigg|\bigg| \bigg(\begin{smallmatrix}-a\\K-b-\tfrac{K-b+c}{2}\\-c+\tfrac{K-b+c}{2}\end{smallmatrix}\bigg) \bigg|\bigg| = \bigg|\bigg| \bigg(\begin{smallmatrix}-a\\\tfrac{K-b-c}{2}\\\tfrac{K-b-c}{2}\end{smallmatrix}\bigg) \bigg|\bigg| \\
| |
| & = \sqrt{(-a)^2 + \big(\tfrac{K-b-c}{2}\big)^2 + \big(\tfrac{K-b-c}{2}\big)^2} = \sqrt{a^2 + \tfrac{(K-b-c)^2}{2}} \\
| |
| \end{align}</math>
| |
| | |
| Substituting ''K'' = ''a'' + ''b'' + ''c'',
| |
| | |
| <math>a' = \sqrt{a^2 + \tfrac{(a+b+c-b-c)^2}{2}} = \sqrt{a^2 + \tfrac{a^2}{2}} = a\sqrt{\tfrac{3}{2}}</math> .
| |
| | |
| Similar calculation on lines AC and AB gives
| |
| | |
| <math>b' = b\sqrt{\tfrac{3}{2}}</math> and <math>c' = c\sqrt{\tfrac{3}{2}}</math> .
| |
| | |
| This shows that the distance of the point from the respective lines is linearly proportional to the original values ''a'', ''b'' and ''c''.<ref>[http://wvaughan.org/ternaryplots.html Ternary plots]</ref>
| |
| | |
| ==Plotting a ternary plot==
| |
| [[Cartesian coordinate system|Cartesian coordinates]] are useful for plotting points in the triangle. Consider an equilateral ternary plot where <math>a=100%</math> is placed at <math>(x,y)=(0,0)</math> and <math>b=100%</math> at <math>(1,0)</math>. Then <math>c=100%</math> is <math>\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)</math>, and the triple <math>(a,b,c)</math> is
| |
| <math>\left(\frac{1}{2}\frac{2b+c}{a+b+c},\frac{\sqrt{3}}{2}\frac{c}{a+b+c}\right).</math>
| |
| | |
| ==Example==
| |
| This example shows how this works for a hypothetical set of three soil samples:
| |
| | |
| {| class="wikitable" style="text-align:center;"
| |
| !width="10%"|Sample #||width="10%"|Organic matter||width="10%"|Clay||width="10%"|Sand||Notes
| |
| |-
| |
| |Sample 1||80%||10%||10%||align="left"|Because organic matter and clay make up 90% of this sample, the proportion of sand must be 10%.
| |
| |-
| |
| |Sample 2||50%||40%||10%||align="left"|The proportion of sand is 10% in this sample too, but the proportions of organic matter and clay are different.
| |
| |-
| |
| |Sample 3||10%||40%||50%||align="left"|This sample has the same proportion of clay as in Sample 2 does, but because it has a smaller proportion of organic matter, the proportion of sand must be larger, because all samples' proportions must sum to 100%.
| |
| |}
| |
| | |
| ===Plotting the points===
| |
| <gallery widths="300" heights="229"> | |
| image:ternary.example.plot.1.jpg|Plotting a point: finding the first intersection.
| |
| image:ternary.example.plot.2.jpg|Plotting a point: finding the second intersection.
| |
| image:ternary.example.plot.3.jpg|Plotting a point: the "third" intersection is already found, as it is mathematically dependent on the first two.
| |
| image:ternary.example.plot.4.jpg|Showing points and intersection lines.
| |
| image:ternary.example.plot.5.jpg|Showing only the points.
| |
| </gallery>
| |
| | |
| ==Software==
| |
| Here is a list of software that help enable the creation of ternary plots
| |
| *[[JMP (statistical software)|JMP]]
| |
| *[[Origin (software)|Origin]]
| |
| *[[R (programming language)|R]]
| |
| *[[Veusz]]
| |
| | |
| == References ==
| |
| {{Cite web
| |
| | last = Vaughan
| |
| | first = Will
| |
| | title = Ternary plots
| |
| | url = http://wvaughan.org/ternaryplots.html
| |
| | date = September 5, 2010
| |
| | accessdate = September 7, 2010 }}
| |
| <references />
| |
| | |
| == See also ==
| |
| * [[Barycentric coordinates (mathematics)]]
| |
| * Types of ternary plots:
| |
| ** [[Flammability diagram]]
| |
| ** [[QFL diagram]]
| |
| ** [[Jensen cation plot]]
| |
| * [[Trilemma]]
| |
| * [[Project triangle]]
| |
| * [[Triangular theory of love]]
| |
| | |
| {{Commons category|Ternary plots}}
| |
| | |
| [[Category:Diagrams]]
| |