|
|
Line 1: |
Line 1: |
| In [[mathematics]], a '''Poisson manifold''' is a [[smooth manifold]] <math> M </math> equipped with a [[bilinear map]] <math> \{ \cdot,\cdot \}_{M} </math> (called a [[Poisson bracket]]) on the algebra <math> {C^{\infty}}(M) </math> of [[smooth function]]s on <math> M </math> such that <math> ({C^{\infty}}(M),\{ \cdot,\cdot \}_{M}) </math> is a [[Poisson algebra]]. One usually denotes a Poisson manifold by the ordered pair <math> (M,\{ \cdot,\cdot \}_{M}) </math>. Since their introduction by [[André Lichnerowicz]] in 1977,<ref>{{cite journal|first = A.|last = Lichnerowicz|title = {{lang|fr|Les variétés de Poisson et leurs algèbres de Lie associées}}|journal = [[Journal of Differential Geometry|J. Diff. Geom.]]|volume = 12|year = 1977|issue = 2|pages = 253–300|doi = |mr = 0501133}}</ref> the subjects of Poisson geometry and the cohomology of Poisson manifolds have developed into a wide field of research, which includes modern-day [[non-commutative geometry]].
| | Oscar is what my wife loves to call me and I completely dig that title. Since she was eighteen she's been operating as a meter reader but she's usually needed her personal business. To collect coins is what his family members and him appreciate. Her husband and her live in Puerto Rico but she will have to transfer one working day or another.<br><br>my page - [http://tomjones1190.Livejournal.com/ healthy food delivery] |
| | |
| It is a fact that every [[symplectic manifold]] is a Poisson manifold but not vice-versa. This will be explained in Section 2.
| |
| | |
| ==Definition==
| |
| A '''Poisson bracket''' (or '''Poisson structure''') on a smooth manifold <math> M </math> is a bilinear map
| |
| | |
| :<math> \{ \cdot,\cdot\}: {C^{\infty}}(M) \times {C^{\infty}}(M) \to {C^{\infty}}(M) </math>
| |
| | |
| that satisfies the following three properties:
| |
| * It is [[skew-symmetric]]: <math> \{ f,g \} = - \{ g,f \} </math>.
| |
| * It obeys the [[Jacobi identity|Jacobi Identity]]: <math> \{ f,\{ g,h \} \} + \{ g,\{ h,f \} \} + \{ h,\{ f,g \} \} = 0 </math>.
| |
| * It obeys Leibniz's Rule with respect to the first argument: <math> \{ fg,h \} = f \{ g,h \} + g \{ f,h \} </math>.
| |
| | |
| By skew-symmetry, the Poisson bracket automatically satisfies Leibniz's Rule with respect to the second argument. The last property basically states that the map <math> f \mapsto \{ f,g \} </math> is a derivation on <math> {C^{\infty}}(M) </math> for any fixed <math> g \in {C^{\infty}}(M) </math>. Every derivation <math> \delta </math> on <math> {C^{\infty}}(M) </math> can be written as a directional derivative <math> [\delta(f)](x) = {(\mathrm{d} f)_{x}}((X_{\delta})_{x}) </math>, where <math> x \in M </math>, for some [[vector field]] <math> X_{\delta} </math>. It follows that for <math> g \in {C^{\infty}}(M) </math>, we obtain a vector field <math> X_{g} </math> such that <math> \{ f,g \}(x) = {(\mathrm{d} f)_{x}}((X_{g})_{x}) </math>, where <math> x \in M </math> (written more briefly, <math> \{ f,g \} = {\mathrm{d} f}(X_{g}) </math>). The vector field <math> X_{g} </math> is called the [[Hamiltonian vector field]] corresponding to <math> g </math>. Notice that
| |
| | |
| :<math> \langle \mathrm{d} f,X_{g} \rangle = {X_{g}}(f) = \{ f,g \} = - {X_{f}}(g) = - \langle \mathrm{d} g,X_{f} \rangle </math>,
| |
| | |
| where <math> \langle \cdot,\cdot \rangle </math> is the pairing between the cotangent and tangent bundles of <math> M </math>. Therefore, <math> \{ f,g \} </math> depends only on the differentials <math> \mathrm{d} f </math> and <math> \mathrm{d} g </math>. Any Poisson bracket yields a map from the [[cotangent bundle]] to the [[tangent bundle]] that sends <math> \mathrm{d} f </math> to <math> X_{f} </math>.
| |
| | |
| ==The Poisson Bivector==
| |
| Given a Poisson manifold <math> (M,\{ \cdot,\cdot \}_{M}) </math>, the pairing between the cotangent and tangent bundles yields a [[bivector]] field <math> \eta </math> on <math> M </math>, called the '''Poisson bivector field'''. The Poisson bivector field is a contravariant skew-symmetric 2-tensor field <math> \eta \in \Gamma \left( \bigwedge^{2} TM \right) </math> that satisfies the following:
| |
| | |
| :<math> \forall x \in M: \quad {\{ f,g \}_{M}}(x) = \langle (\mathrm{d} f)_{x} \otimes (\mathrm{d} g)_{x},\eta_{x} \rangle </math>.
| |
| | |
| Conversely, given a smooth bivector field <math> \eta </math> on <math> M </math>, we can use the formula above to define a skew-symmetric bracket <math> \{ \cdot,\cdot \}_{\eta} </math> that obeys Leibniz's rule with respect to each argument. However, we cannot claim that <math> \{ \cdot,\cdot \}_{\eta} </math> is a Poisson bracket because the Jacobi Identity may not hold (in this case, we call <math> \{ \cdot,\cdot \}_{\eta} </math> an '''almost-Poisson structure'''). Indeed, <math> \{ \cdot,\cdot \}_{\eta} </math> is a Poisson bracket if and only if the [[Schouten–Nijenhuis bracket]] <math> [\eta,\eta] </math> equals zero.
| |
| | |
| In terms of local coordinates, the bivector field at a point <math> x = (x_{1},\ldots,x_{m}) </math> can be expressed as
| |
| | |
| :<math> \forall x \in M: \quad \eta_x = \sum_{i,j = 1}^{m} {\eta_{i,j}}(x) \cdot \left( \frac{\partial}{\partial x_{i}} \right)_{x} \otimes \left( \frac{\partial}{\partial x_{j}} \right)_{x} </math>,
| |
| | |
| so that
| |
| | |
| :<math> \{ f,g \}(x) = \langle (\mathrm{d} f)_{x} \otimes (\mathrm{d} g)_{x},\eta_{x} \rangle = \sum_{i,j = 1}^{m} {\eta_{i,j}}(x) \left( \frac{\partial f}{\partial x_{i}} \right)_{x} \left( \frac{\partial g}{\partial x_{j}} \right)_{x} </math>.
| |
| | |
| For a symplectic manifold <math> (M,\omega) </math>, we can define a bivector field <math> \eta </math> on <math> M </math> using the pairing between the cotangent and tangent bundles given by the [[symplectic form]] <math> \omega </math>. This pairing is well-defined because <math> \omega </math> is [[nondegenerate form|nondegenerate]]. Hence, the difference between a symplectic manifold and a Poisson manifold is that the symplectic form is regular (of full rank) everywhere but the Poisson bivector field need not have full rank everywhere. When the Poisson bivector field is zero everywhere, we call it the '''trivial Poisson structure'''.
| |
| | |
| ==Poisson Maps==
| |
| A '''Poisson map''' from a Poisson manifold <math> (M,\{ \cdot,\cdot \}_{M}) </math> to another Poisson manifold <math> (N,\{ \cdot,\cdot \}_{N}) </math> is defined to be a smooth map <math> \varphi: M \to N </math> that respects the Poisson structures in the following sense:
| |
| | |
| :<math> \{ f_{1},f_{2} \}_{N} \circ \varphi = \{ f_{1} \circ \varphi,f_{2} \circ \varphi\}_{M} </math>.
| |
| | |
| A Poisson map may be viewed as a morphism in the category of Poisson manifolds.
| |
| | |
| ==The Product of Poisson Manifolds==
| |
| Given two Poisson manifolds <math> (M,\{ \cdot,\cdot \}_{M}) </math> and <math> (N,\{ \cdot,\cdot \}_{N}) </math>, a [[Poisson bracket]] may be defined on the product manifold <math> M \times N </math>. Letting <math> f_{1} </math> and <math> f_{2} </math> be two smooth functions defined on <math> M \times N </math>, one can define a new Poisson bracket <math> \{ \cdot,\cdot \}_{M \times N} </math> in terms of <math> \{ \cdot,\cdot \}_{M} </math> and <math> \{ \cdot,\cdot \}_{N} </math> as follows:
| |
| | |
| :<math> {\{ f_{1},f_{2} \}_{M \times N}}(x,y) = {\{ {f_{1}}(x,\cdot),{f_{2}}(x,\cdot) \}_{N}}(y) + {\{ {f_{1}}(\cdot, y),{f_{2}}(\cdot,y) \}_{M}}(x) </math>,
| |
| | |
| where <math> x \in M </math> and <math> y \in N </math> are to be held constant. In other words, if
| |
| | |
| :<math> f(\cdot,\cdot): M \times N \to \mathbf{R} </math>,
| |
| | |
| then both
| |
| | |
| :<math> f(x,\cdot): N \to \mathbf{R} </math>
| |
| | |
| and
| |
| | |
| :<math> f(\cdot,y): M \to \mathbf{R} </math>
| |
| | |
| are implied.
| |
| | |
| ==The Symplectic Leaves of a Poisson Structure==
| |
| A Poisson manifold <math> (M,\{ \cdot,\cdot \}_{M}) </math> can be split into a collection of '''symplectic leaves'''. This splitting arises from the foliation of disjoint regions of <math> M </math> where the Poisson bivector field has constant rank. Each leaf of the foliation is thus an even-dimensional sub-manifold of <math> M </math> that is itself a symplectic manifold. Distinct symplectic leaves may have different dimensions. Two points lie in the same leaf if and only if they are joined by a piecewise-smooth curve where each piece is the [[integral curve]] of a Hamiltonian vector field. The relation "piecewise-connected by integral curves of Hamiltonian fields" is an [[equivalence relation]] on <math> M </math>, and the equivalence classes of this equivalence relation are the symplectic leaves.
| |
| | |
| ==Example (Lie-Poisson Manifold)==
| |
| If <math> \mathfrak{g} </math> is a finite-dimensional [[Lie algebra]] and <math> \mathfrak{g}^{*} </math> is its dual vector space, then the Lie bracket induces a Poisson structure on <math> \mathfrak{g}^{*} </math>.
| |
| | |
| More precisely, we identify the cotangent bundle of the manifold <math> \mathfrak{g}^{*} </math>, i.e., the dual of <math> \mathfrak{g}^{*} </math> with the given Lie algebra <math> \mathfrak{g} </math>. Then for two functions <math> f_{1} </math> and <math> f_{2} </math> on <math> \mathfrak{g}^{*} </math>, and a point <math> \mathbf{x} \in \mathfrak{g}^{*} </math>, we may define
| |
| | |
| :<math> \{ f_1,f_2 \}(\mathbf{x}) := \langle \left[(\mathrm{d} f_{1})_{\mathbf{x}}, (\mathrm{d} f_{2})_{\mathbf{x}} \right],\mathbf{x} \rangle </math>,
| |
| | |
| where the Lie bracket <math> [\cdot,\cdot] </math> is computed in <math> \mathfrak{g} </math> through the isomorphism:
| |
| | |
| :<math> \mathrm{d} f \in \mathfrak{g}^{**} \cong \mathfrak{g} </math>.
| |
| | |
| If <math> \mathbf{e}_{k} </math> are local coordinates on <math> \mathfrak{g} </math>, then the Poisson bivector field is given by
| |
| | |
| :<math> {\eta_{i,j}}(\mathbf{x}) = \sum_{k} c_{ij}^{k} \langle \mathbf{x},\mathbf{e}_{k} \rangle </math>,
| |
| | |
| where the <math> c_{ij}^{k} </math> are the [[structure constants]] of <math> \mathfrak{g} </math>.
| |
| | |
| The symplectic leaves of this Lie-Poisson manifold are the co-adjoint orbits of the Lie algebra used for the [[orbit method]].
| |
| | |
| ==Complex Structure==
| |
| A '''complex Poisson manifold''' is a Poisson manifold with a complex or [[almost complex structure]] <math> J </math> such that the complex structure preserves the bivector:
| |
| | |
| :<math> \left( J \otimes J \right)(\eta) = \eta </math>.
| |
| | |
| The symplectic leaves of a complex Poisson manifold are [[pseudo-Kähler manifold]]s.
| |
| | |
| ==See also==
| |
| * [[Nambu-Poisson manifold]]
| |
| * [[Poisson-Lie group]]
| |
| * [[Poisson supermanifold]]
| |
| | |
| ==Notes==
| |
| {{Reflist}}
| |
| | |
| ==References==
| |
| *{{cite journal|first = A.|last = Lichnerowicz|title = {{lang|fr|Les variétés de Poisson et leurs algèbres de Lie associées}}|journal = [[Journal of Differential Geometry|J. Diff. Geom.]]|volume = 12|year = 1977|issue = 2|pages = 253–300|doi = |mr = 0501133}}
| |
| *{{cite journal|first = A. A.|last = Kirillov|title = Local Lie algebras|journal = Russ. Math. Surv.|volume = 31|issue = 4|year = 1976|pages = 55–75|doi = 10.1070/RM1976v031n04ABEH001556}}
| |
| *{{cite book|first = V.|last = Guillemin|first2 = S.|last2 = Sternberg|title = Symplectic Techniques in Physics|location = New York|publisher = Cambridge Univ. Press|year = 1984|isbn = 0-521-24866-3}}
| |
| *{{cite book|first = P.|last = Libermann|first2 = C.-M.|last2 = Marle|title = Symplectic geometry and analytical mechanics|location = Dordrecht|publisher = Reidel|year = 1987|isbn = 90-277-2438-5}}
| |
| *{{cite book|first = K. H.|last = Bhaskara|first2 = K.|last2 = Viswanath|title = Poisson algebras and Poisson manifolds|location = |publisher = Longman|year = 1988|isbn = 0-582-01989-3}}
| |
| *{{cite book|first = I.|last = Vaisman|title = Lectures on the Geometry of Poisson Manifolds|location = |publisher = Birkhäuser|year = 1994|isbn = }} See also the [http://www.ams.org/bull/1996-33-02/S0273-0979-96-00644-1/S0273-0979-96-00644-1.pdf review] by Ping Xu in the Bulletin of the AMS.
| |
| *{{cite journal|first = A.|last = Weinstein|title = The local structure of Poisson manifolds|journal = J. Diff. Geom.|volume = 18|year = 1983|issue = 3|mr = 834280|pages = 523–557}} Errata and addenda ''J. Diff. Geom.'' '''22''' (1985), 255.
| |
| | |
| [[Category:Differential geometry]]
| |
| [[Category:Symplectic geometry]]
| |
| [[Category:Smooth manifolds]]
| |