Supertoroid: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Brad7777
References: changed category geometry to surfaces
 
en>Squids and Chips
m WPCleaner v1.26 - Repaired 1 link to disambiguation page - (You can help) - Interval
 
Line 1: Line 1:
There are '''common integrals in quantum field theory''' that appear repeatedly.<ref> {{cite book | author=A. Zee    | title=Quantum Field Theory in a Nutshell| publisher= Princeton University| year=2003 | id=ISBN 0-691-01019-6}} pp. 13-15 </ref> These integrals are all variations and generalizations of [[gaussian integral]]s to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the gaussian integral. Fourier integrals are also considered.


==Variations on a simple gaussian integral==
===Gaussian integral===
The first integral, with broad application outside of quantum field theory, is the [[gaussian integral]].


CMS provides the best platform to create websites that fulfill all the specifications of SEOTo check out more in regards to [http://shortener.us/backup_plugin_3246610 backup plugin] look into our webpage. It is very easy to customize plugins according to the needs of a particular business. These templates are professionally designed and are also Adsense ready. If you are using videos on your site then this is the plugin to use. It's as simple as hiring a Wordpress plugin developer or learning how to create what is needed. <br><br>Luckily, for Word - Press users, WP Touch plugin transforms your site into an IPhone style theme. You may either choose to link only to the top-level category pages or the ones that contain information about your products and services. There are number of web services that offer Word press development across the world. This is identical to doing a research as in depth above, nevertheless you can see various statistical details like the number of downloads and when the template was not long ago updated. This can be done by using a popular layout format and your unique Word - Press design can be achieved in other elements of the blog. <br><br>Photography is an entire activity in itself, and a thorough discovery of it is beyond the opportunity of this content. It was also the very first year that the category of Martial Arts was included in the Parents - Connect nationwide online poll, allowing parents to vote for their favorite San Antonio Martial Arts Academy. Setting Up Your Business Online Using Free Wordpress Websites. Enough automated blog posts plus a system keeps you and your clients happy. There are plenty of tables that are attached to this particular database. <br><br>Additionally Word - Press add a default theme named Twenty Fourteen. The SEOPressor Word - Press SEO Plugin works by analysing each page and post against your chosen keyword (or keyword phrase) and giving a score, with instructions on how to improve it. The templates are designed to be stand alone pages that have a different look and feel from the rest of your website. The company gains commission from the customers' payment. Wordpress template is loaded with lots of prototype that unite graphic features and content area. <br><br>Internet is not only the source for information, it is also one of the source for passive income. As a website owner, you can easily manage CMS-based website in a pretty easy and convenient style. Just download it from the website and start using the same. This is because of the customization that works as a keystone for a SEO friendly blogging portal website. Customers within a few seconds after visiting a site form their opinion about the site.
:<math> G \equiv \int_{-\infty}^{\infty} e^{-{1 \over 2} x^2}\,dx</math>
 
In physics the factor of 1/2 in the argument of the exponential is common.
 
Note:
 
:<math> G^2 = \left ( \int_{-\infty}^{\infty} e^{-{1 \over 2} x^2}\,dx \right ) \cdot \left ( \int_{-\infty}^{\infty} e^{-{1 \over 2} y^2}\,dy \right ) = 2\pi \int_{0}^{\infty} r e^{-{1 \over 2} r^2}\,dr = 2\pi \int_{0}^{\infty} e^{- w}\,dw = 2 \pi.</math>
 
Thus we obtain
 
:<math> \int_{-\infty}^{\infty} e^{-{1 \over 2} x^2}\,dx = \sqrt{2\pi}. </math>
 
 
===Slight generalization of the gaussian integral===
 
:<math> \int_{-\infty}^{\infty} e^{-{1 \over 2} a x^2}\,dx = \sqrt{2\pi \over a} </math>
 
where we have scaled
 
:<math> x \rightarrow {x \over \sqrt{a}} </math>.
 
===Integrals of exponents and even powers of ''x''===
 
 
:<math> \int_{-\infty}^{\infty} x^2 e^{-{1 \over 2} a x^2}\,dx = -2{d\over da} \int_{-\infty}^{\infty} e^{-{1 \over 2} a x^2}\,dx = -2{d\over da} \left ( {2\pi \over a } \right ) ^{1\over 2} = \left ( {2\pi \over a } \right ) ^{1\over 2} {1\over a}</math>
 
and
 
:<math> \int_{-\infty}^{\infty} x^4 e^{-{1 \over 2} a x^2}\,dx = \left ( -2{d\over da} \right) \left ( -2{d\over da} \right) \int_{-\infty}^{\infty} e^{-{1 \over 2} a x^2}\,dx = \left ( -2{d\over da} \right) \left ( -2{d\over da} \right) \left ( {2\pi \over a } \right ) ^{1\over 2} = \left ( {2\pi \over a } \right ) ^{1\over 2} {3\over a^2}</math>
 
In general
 
:<math> \int_{-\infty}^{\infty} x^{2n} e^{-{1 \over 2} a x^2}\,dx = \left ( {2\pi \over a } \right ) ^{1\over {2}} {1\over a^{n}} \left ( 2n -1 \right ) \left ( 2n -3 \right ) \cdots 5 \cdot 3 \cdot 1 = \left ( {2\pi \over a } \right ) ^{1\over {2}} {1\over a^{n}} \left ( 2n -1 \right )!! </math>
 
Note that the integrals of exponents and odd powers of x are 0, due to [[odd function|odd]] symmetry.
 
===Integrals with a linear term in the argument of the exponent===
 
:<math> \int_{-\infty}^{\infty} \exp\left( -{1 \over 2} a x^2 + Jx\right ) dx </math>
 
This integral can be performed by completing the square.
 
:<math> \left( -{1 \over 2} a x^2 + Jx\right ) = -{1 \over 2} a \left ( x^2 - { 2 Jx \over a } + { J^2 \over a^2 } - { J^2 \over a^2 } \right ) = -{1 \over 2} a \left ( x -  { J \over a } \right )^2 + { J^2 \over 2a } </math>
 
:<math>
\begin{align}
& \int_{-\infty}^\infty \exp\left( -{1 \over 2} a x^2 + Jx\right) \, dx = \exp\left( { J^2 \over 2a } \right ) \int_{-\infty}^\infty \exp \left [ -{1 \over 2} a \left ( x - { J \over a } \right )^2 \right ] \, dx \\[8pt]
& = \exp\left( { J^2 \over 2a } \right )\int_{-\infty}^\infty \exp\left( -{1 \over 2} a x^2 \right) \, dx =  \left ( {2\pi \over a } \right ) ^{1\over 2} \exp\left( { J^2 \over 2a }\right )
\end{align}
</math>
 
===Integrals with an imaginary linear term in the argument of the exponent===
 
The integral
 
:<math> \int_{-\infty}^{\infty} \exp\left( -{1 \over 2} a x^2 + iJx\right ) dx  =  \left ( {2\pi \over a } \right ) ^{1\over 2} \exp\left( -{ J^2 \over 2a }\right ) </math>
 
is proportional to the [[Fourier transform]] of the gaussian where <math>J </math> is the [[conjugate variables | conjugate variable]] of <math>x </math>.
 
By again completing the square we see that the Fourier transform of a gaussian is also a gaussian, but in the conjugate variable. The larger <math>a </math> is, the narrower the gaussian in <math>x </math> and the wider the gaussian in <math>J </math>. This is a demonstration of the [[uncertainty principle]].
 
===Integrals with a complex argument of the exponent===
The integral of interest is (for an example of an application see [[Relation between Schrödinger's equation and the path integral formulation of quantum mechanics]])
:<math> \int_{-\infty}^{\infty} \exp\left( {1 \over 2} i a x^2 + iJx\right ) dx.   </math>
 
We now assume that <math>a_{ }^{ }</math> and <math>J_{ }^{ }</math> may be complex.
 
Completing the square
 
:<math> \left( {1 \over 2} i a x^2 + iJx\right )  =  {1\over 2} ia \left ( x^2 + {2Jx \over a} + \left ( { J \over a} \right )^2 - \left ( { J \over a} \right )^2 \right ) = -{1\over 2} {a \over i} \left ( x + {J\over a} \right )^2 - { iJ^2 \over 2a}. </math>
 
By analogy with the previous integrals
 
:<math> \int_{-\infty}^{\infty} \exp\left( {1 \over 2} i a x^2 + iJx\right ) dx  =  \left ( {2\pi i \over a } \right ) ^{1\over 2} \exp\left( { -iJ^2 \over 2a }\right ). </math>
 
This result is valid as an integration in the complex plane as long as <math>a_{ }^{ }</math> has a positive imaginary part.
 
==Gaussian integrals in higher dimensions==
 
The one-dimensional integrals can be generalized to multiple dimensions.<ref> {{cite book | author=Frederick W. Byron and Robert W. Fuller    | title=Mathematics of Classical and Quantum Physics | publisher= Addison-Wesley| year=1969 | id=ISBN 0-201-00746-2}}</ref>
 
:<math>
\int \exp\left( - \frac 1 2 x \cdot A \cdot x +J \cdot x \right) d^nx
=
\sqrt{\frac{(2\pi)^n}{\det A}} \exp \left( {1\over 2} J \cdot A^{-1} \cdot J \right)
</math>
 
Here <math>A</math> is a real [[symmetric matrix]].
 
This integral is performed by [[Diagonalizable matrix | diagonalization]] of <math>A</math> with an [[orthogonal matrix | orthogonal transformation]]
 
:<math>
D_{ }^{ } = O^{-1}  A  O = O^T  A  O
</math>
 
where <math>D</math> is a [[diagonal matrix]] and <math>O</math> is an [[orthogonal matrix]]. This decouples the variables and allows the integration to be performed as <math>n_{ }^{ }</math> one-dimensional integrations.
 
This is best illustrated with a two-dimensional example.
===Example: Simple gaussian integration in two dimensions===
 
The gaussian integral in two dimensions is
 
:<math>
\int \exp\left( - \frac 1 2 A_{ij} x^i x^j \right) d^2x
=
\sqrt{\frac{(2\pi)^2}{\det A}}
</math>
 
where <math> A  </math> is a two-dimensional symmetric matrix with components specified as
 
:<math> A = \bigl[ \begin{smallmatrix}
  a&c\\ c&b
\end{smallmatrix} \bigr]
    </math>
 
and we have used the [[Einstein summation convention]].
 
====Diagonalize the matrix====
 
The first step is to [[Diagonalizable matrix | diagonalize]] the matrix.<ref> {{cite book | author=Herbert S. Wilf    | title=Mathematics for the Physical Sciences | publisher= Dover| year=1978 | id=ISBN 0-486-63635-6}}</ref> Note that
 
:<math> A_{ij} x^i x^j \equiv x^T  A  x = x^T  \left( O  O^T\right)  A  \left( O  O^T\right)  x  = \left( x^T  O \right) \left(  O^T  A  O \right) \left(  O^T  x \right)
    </math>
 
where, since A is a real [[symmetric matrix]], we can choose <math>O</math> to be an [[orthogonal matrix]], and hence also a [[unitary matrix]].
 
We choose <math>O</math> such that
 
:<math> D \equiv  O^T  A  O
    </math>
 
is diagonal.
 
<math>O</math> can be obtained from the [[eigenvectors]] of <math>A</math>.
 
=====Eigenvalues of ''A''=====
To find the eigenvectors of <math>A</math> one first finds the [[eigenvalues]] <math>\lambda</math> of <math>A</math> given by
 
:<math>  \bigl[ \begin{smallmatrix}
  a&c\\ c&b
\end{smallmatrix} \bigr]
\bigl[ \begin{smallmatrix}
  u\\ v
\end{smallmatrix} \bigr] =
\lambda \bigl[ \begin{smallmatrix}
  u\\ v
\end{smallmatrix} \bigr].
    </math>
 
The eigenvalues are solutions of the [[characteristic polynomial]]
 
:<math> \left( a - \lambda \right) \left( b-\lambda\right) -c^2 = 0 </math>
 
which are
 
:<math>  \lambda_{\pm} = {1\over 2}\left( a+b\right) \pm {1\over 2}\sqrt{ \left(a-b\right)^2+4c^2}. </math>
 
=====Eigenvectors of ''A''=====
 
Substitution of the eigenvalues back into the eigenvector equation yields
 
:<math> v = -{ \left( a - \lambda_{\pm} \right)u \over c }</math>
 
or  
 
:<math> v = -{cu \over  \left( b - \lambda_{\pm}  \right)}.</math>
 
From the characteristic equation we know
 
:<math> { \left( a - \lambda_{\pm} \right)\over c } = {c \over  \left( b - \lambda_{\pm}  \right)}.</math>
 
Also note
 
:<math> {\left( a - \lambda_{\pm} \right)\over c } = -{\left( b - \lambda_{\mp}  \right) \over c}. </math>
 
The eigenvectors can be written
 
:<math> 
  \begin{bmatrix}
  {1\over \eta}\\ - \left( {  a - \lambda_{-}  \over c\eta } \right)
\end{bmatrix}
    </math>
 
and
 
:<math> 
  \begin{bmatrix}
  - \left( {  b - \lambda_{+}  \over c\eta } \right) \\ { 1\over \eta}
\end{bmatrix}
    </math>
 
for the two eigenvectors. Here <math>\eta</math> is a normalizing factor given by
 
:<math> 
  \eta = \sqrt{ 1 + \left( {  a - \lambda_{-}  \over c } \right)^2 } = \sqrt{ 1 + \left( {  b - \lambda_{+}  \over c } \right)^2 }.
    </math>
 
It is easily verified that the two eigenvectors are orthogonal to each other.
 
=====Construction of the orthogonal matrix=====
The orthogonal matrix is constructed by assigning the normalized eigenvectors as columns in the orthogonal matrix
 
:<math> 
O =  \begin{bmatrix}
  {1\over \eta } & -\left( {  b - \lambda_{+}  \over c \eta }\right) \\ -\left( {  a - \lambda_{-}  \over c \eta }\right) & {1\over \eta }
\end{bmatrix}.
    </math>
 
Note that the determinant of O is equal to one.
 
If we define
 
:<math> \sin \left( \theta \right) \equiv  -\left( {  a - \lambda_{-}  \over c \eta }\right)  </math>
 
then the orthogonal matrix can be written
 
:<math> 
O =  \begin{bmatrix}
  \cos \left( \theta \right) & -\sin \left( \theta \right) \\ \sin \left( \theta \right) & \cos \left( \theta \right)
\end{bmatrix}
    </math>
 
which is simply a rotation of the eigenvectors.
 
The inverse is
 
:<math> 
O^{-1} = O^T =  \begin{bmatrix}
  \cos \left( \theta \right) & \sin \left( \theta \right) \\ -\sin \left( \theta \right) & \cos \left( \theta \right)
\end{bmatrix}.
    </math>
 
=====Diagonal matrix=====
 
The diagonal matrix becomes
 
:<math> 
D = O^T A O =  \begin{bmatrix}
\lambda_{-}&0\\ 0 & \lambda_{+}
\end{bmatrix}
    </math>
 
with eigenvectors
 
:<math> 
  \begin{bmatrix}
1\\ 0
\end{bmatrix}
    </math>
 
and
 
:<math> 
  \begin{bmatrix}
0\\ 1
\end{bmatrix}
    </math>
 
=====Numerical example=====
 
:<math> 
A =  \begin{bmatrix}
2&1\\ 1 & 1
\end{bmatrix}
    </math>
 
The eigenvalues are
 
:<math>
\lambda_{\pm}  =  {3\over 2} \pm {\sqrt{ 5} \over 2}.
    </math>
 
The eigenvectors are
 
:<math>  {1\over \eta}
  \begin{bmatrix}
  1\\ { -{1\over 2} - {\sqrt{ 5} \over 2} }
\end{bmatrix}
    </math>
 
and
 
:<math>  {1\over \eta}
  \begin{bmatrix}
  { {1\over 2} + {\sqrt{ 5} \over 2 } } \\  1 
\end{bmatrix}
    </math>
where
 
:<math>  \eta = \sqrt{ {5\over 2} + {\sqrt{5}\over 2} }
    </math> .
 
The orthogonal vector is
 
:<math>  O =
  \begin{bmatrix}
  {1\over \eta} & {1\over \eta} \left({ {1\over 2} + {\sqrt{ 5} \over 2}  }\right) \\ {1\over \eta} \left({ -{1\over 2} - {\sqrt{ 5} \over 2}  }\right) & {1\over \eta}
\end{bmatrix}.
    </math>
 
It is easily verified that the determinant of O is 1.
 
The inverse of O is
 
:<math>  O =
  \begin{bmatrix}
  {1\over \eta} & {1\over \eta} \left({ -{1\over 2} - {\sqrt{ 5} \over 2}  }\right) \\ {1\over \eta} \left({ {1\over 2} + {\sqrt{ 5} \over 2}  }\right) & {1\over \eta}
\end{bmatrix}.
    </math>
 
The diagonal matrix becomes
 
:<math>  D = O^TAO =
  \begin{bmatrix}
  \lambda_{-} &0\\ 0 & \lambda_{+}
\end{bmatrix} =
 
  \begin{bmatrix}
  \left({ {3\over 2} - {\sqrt{ 5} \over 2}  }\right)& 0\\ 0 & \left({ {3\over 2} + {\sqrt{ 5} \over 2}  }\right)
\end{bmatrix}
    </math>
 
with the eigenvectors
 
:<math> 
  \begin{bmatrix}
  1\\ 0
\end{bmatrix} 
    </math>
 
and
 
:<math>  \begin{bmatrix}
  0\\ 1
\end{bmatrix}.
    </math>
 
====Rescale the variables and integrate====
 
With the diagonalization the integral can be written
 
:<math> 
\int \exp\left( - \frac 1 2 x^T A x \right) d^2x
= \int \exp\left( - \frac 1 2 \sum_{j=1}^2 \lambda_{j} y_j^2 \right) \, d^2y
    </math>
 
where
 
:<math>  y_{ }^{ } = O^T x </math> .
 
Since the coordinate transformation is simply a rotation of coordinates the [[Jacobian matrix and determinant|Jacobian]] determinant of the transformation is one yielding
 
:<math>  dy_{ }^2  = dx^2 </math> .
 
The integrations can now be performed.
 
:<math> 
\int \exp\left( - \frac 1 2 x^T A x \right) d^2x
= \int \exp\left( - \frac 1 2 \sum_{j=1}^2 \lambda_{j} y_j^2 \right) d^2y
= \prod_{j=1}^2 \left( { 2\pi \over \lambda_j } \right)^{1\over 2}
= \left( { ( 2\pi )^2  \over \prod_{j=1}^2 \lambda_j } \right)^{1\over 2}
= \left( { ( 2\pi )^2  \over \det{ \left( O^{-1}AO \right)}  } \right)^{1\over 2}
= \left( { ( 2\pi )^2  \over \det{ \left( A \right)}  } \right)^{1\over 2}
    </math>
 
which is the advertised solution.
 
===Integrals with complex and linear terms in multiple dimensions===
 
With the two-dimensional example it is now easy to see the generalization to the complex plane and to multiple dimensions.
 
====Integrals with a linear term in the argument====
 
:<math>
\int \exp\left( - \frac 1 2 x \cdot A \cdot x +J \cdot x \right) d^nx
=
\sqrt{\frac{(2\pi)^n}{\det A}} \exp \left( {1\over 2} J \cdot A^{-1} \cdot J \right)
</math>
 
 
====Integrals with an imaginary linear term====
 
:<math>
\int \exp\left( - \frac 1 2 x \cdot A \cdot x +iJ \cdot x \right) d^nx
=
\sqrt{\frac{(2\pi)^n}{\det A}} \exp \left( -{1\over 2} J \cdot A^{-1} \cdot J \right)
</math>
 
====Integrals with a complex quadratic term====
 
:<math>
\int \exp\left(  \frac i 2 x \cdot A \cdot x +iJ \cdot x \right) d^nx
=
\sqrt{\frac{(2\pi i)^n}{\det A}} \exp \left( -{i\over 2} J \cdot A^{-1} \cdot J \right)
</math>
 
===Integrals with differential operators in the argument===
As an example consider the integral<ref> Zee, pp. 21-22. </ref>
 
:<math>
\int \exp\left[  \int d^4x \left ( -\frac 1 2 \varphi  \hat A  \varphi +  J  \varphi \right) \right ] D\varphi
</math>
 
where <math> \hat A </math> is a differential operator with <math> \varphi </math> and <math> J </math> functions of [[spacetime]], and <math> D\varphi </math> indicates integration over all possible paths. In analogy with the matrix version of this integral the solution is
 
:<math>
\int \exp\left( - \frac 1 2 \varphi  \hat A  \varphi +J  \varphi \right) D\varphi \; \propto \;
\exp \left( {1\over 2} \int d^4x \; d^4y J\left ( x \right ) D\left ( x - y \right )  J\left( y \right )  \right)
</math>
 
where
 
:<math>
\hat A D\left ( x - y \right ) = \delta^4 \left ( x - y \right )
</math>
 
and <math> D\left ( x - y \right ) </math>, called the [[propagator]], is the inverse of <math> \hat A </math>, and <math> \delta^4 \left ( x - y \right ) </math> is the [[Dirac delta function]].
 
Similar arguments yield
 
:<math>
\int \exp\left[  \int d^4x \left ( -\frac 1 2 \varphi  \hat A  \varphi +  i J  \varphi \right) \right ] D\varphi \; \propto \;
\exp \left( - { 1\over 2} \int d^4x \; d^4y J\left ( x \right ) D\left ( x - y \right )  J\left( y \right )  \right)
</math>
 
and
 
:<math>
\int \exp\left[ i \int d^4x \left ( \frac 1 2 \varphi  \hat A  \varphi +  J  \varphi \right) \right ] D\varphi \; \propto \;
\exp \left( { i\over 2} \int d^4x \; d^4y J\left ( x \right ) D\left ( x - y \right )  J\left( y \right )  \right)
</math>.
 
See [[Static forces and virtual-particle exchange#Path-integral formulation of virtual-particle exchange |Path-integral formulation of virtual-particle exchange]] for an application of this integral.
 
==Integrals that can be approximated by the method of steepest descent==
 
In quantum field theory n-dimensional integrals of the form
 
:<math>  \int_{-\infty}^{\infty} \exp\left( -{1 \over \hbar} f\left( q \right) \right ) d^nq</math>
 
appear often. Here <math>\hbar</math> is the [[reduced Planck's constant]] and f is a function with a positive minimum at <math> q=q_0</math>. These integrals can be approximated by the [[method of steepest descent]].
 
For small values of Planck's constant, f can be expanded about its minimum
 
:<math>  \int_{-\infty}^{\infty} \exp\left[ -{1 \over \hbar} \left( f\left( q_0 \right)  + {1\over 2} \left( q-q_0\right)^2f^{\prime \prime} \left( q-q_0\right) + \cdots \right ) \right] d^nq</math>.
 
Here <math> f^{\prime \prime} </math> is the n by n matrix of second derivatives evaluated at the minimum of the function.
 
If we neglect higher order terms this integral can be integrated explicitly.
 
:<math>  \int_{-\infty}^{\infty} \exp\left[ -{1 \over \hbar} \left( f\left( q \right)  \right ) \right] d^nq \approx
\exp\left[ -{1 \over \hbar} \left( f\left( q_0 \right)  \right ) \right] \sqrt{ (2 \pi \hbar )^n \over \det f^{\prime \prime} } </math>.
 
==Integrals that can be approximated by the method of stationary phase==
 
A common integral is a path integral of the form
 
:<math>  \int \exp\left( {i \over \hbar}  S\left( q, \dot q \right) \right ) Dq </math>
 
where <math> S\left( q, \dot q \right) </math> is the classical [[Action (physics) | action]] and the integral is over all possible paths that a particle may take. In the limit of small <math> \hbar </math> the integral can be evaluated in the [[stationary phase approximation]]. In this approximation the integral is over the path in which the action is a minimum. Therefore, this approximation recovers the [[classical limit]] of [[classical mechanics | mechanics]].
 
==Fourier integrals==
 
===Dirac delta function===
The [[Dirac delta function]] in [[spacetime]] can be written as a [[Fourier transform]]<ref> Zee, p. 23. </ref>
 
:<math>  \int { d^4 k \over \left ( 2 \pi \right ) ^4 } \; {\exp \left ( ik \left ( x-y \right) \right ) = \delta^4 \left ( x-y \right )  } </math>.
 
In general, for any dimension <math> N </math>
 
:<math>  \int { d^N k \over \left ( 2 \pi \right ) ^N } \; {\exp \left ( ik \left ( x-y \right) \right ) = \delta^N \left ( x-y \right )  } </math>.
 
===Fourier integrals of forms of the Coulomb potential===
 
====Laplacian of 1/r====
 
While not an integral, the identity in three-dimensional [[Euclidean space]]
 
:<math>
-{1 \over 4\pi} \nabla^2 \left( {1 \over r} \right)
= \delta \left( \mathbf r \right)
</math>
 
where
 
:<math>
r^2 =  \mathbf r \cdot \mathbf r
</math>
 
is a consequence of [[Gauss's theorem]] and can be used to derive integral identities. For an example see [[Longitudinal and transverse vector fields]].
 
This identity implies that the [[Fourier integral]] representation of 1/r is
 
:<math>  \int { d^3 k \over \left ( 2 \pi \right ) ^3 } { \exp \left ( i\mathbf k \cdot \mathbf r \right) \over k^2  } = {1 \over 4 \pi r }  .</math>
 
====Yukawa Potential: The Coulomb potential with mass====
 
The [[Yukawa potential]] in three dimensions can be represented as an integral over a [[Fourier transform]]<ref> Zee, p. 26, 29. </ref>
 
:<math>  \int { d^3 k \over \left ( 2 \pi \right ) ^3 } { \exp \left ( i\mathbf k \cdot \mathbf r \right) \over k^2 +m^2 } = {e^{  - m r } \over 4 \pi r }  </math>
 
where
 
:<math>  r^2 =  \mathbf r \cdot \mathbf r </math>
 
and
 
:<math>  k^2 =  \mathbf k \cdot \mathbf k .</math>
 
See [[Static forces and virtual-particle exchange#Selected examples | Static forces and virtual-particle exchange ]] for an application of this integral.
 
In the small m limit the integral reduces to
 
:<math>  {1 \over 4 \pi r }  </math>.
 
To derive this result note:
 
:<math>  \int { d^3 k \over \left ( 2 \pi \right ) ^3 } { \exp \left ( i \mathbf k \cdot \mathbf r  \right ) \over k^2 +m^2 } =
\int_0^{\infty} {k^2 dk \over \left ( 2 \pi \right )^2 } \int_{-1}^{1} du {\exp\left( ikru \right) \over k^2 + m^2}
</math>
:<math>
=
{2\over r} \int_0^{\infty} {k dk \over \left ( 2 \pi \right )^2 }  {\sin\left( kr \right) \over k^2 + m^2} =
{1\over i r} \int_{-\infty}^{\infty} {k dk \over \left ( 2 \pi \right )^2 }  {\exp\left( ikr \right) \over k^2 + m^2}
</math>
 
:<math>
=
{1\over i r} \int_{-\infty}^{\infty} {k dk \over \left ( 2 \pi \right )^2 }  {\exp\left( ikr \right) \over \left(k + i m \right)\left(k - i m \right)}
=
{1\over i r} { 2\pi i \over \left( 2 \pi \right)^2 } {im \over 2 i m} \exp \left( -m r \right)
</math>
 
====Modified Coulomb potential with mass====
 
:<math>  \int { d^3 k \over \left ( 2 \pi \right ) ^3 }
\left( \mathbf{\hat{k}}\cdot \mathbf{\hat{r}}\right)^2
{ \exp \left ( i\mathbf{k} \cdot \mathbf{r} \right ) \over k^2 +m^2 } = {e^{  - m r } \over 4 \pi r }  \left\{ 1+  {2\over mr} 
-  {2 \over \left( mr \right)^2 } \left( e^{mr} -1 \right)  \right \}  </math>
 
where the hat indicates a unit vector in three dimensional space.
 
In the small m limit the integral goes to zero.
 
To derive this result note:
 
:<math>  \int { d^3 k \over \left ( 2 \pi \right ) ^3 } \left( \mathbf{\hat k}\cdot \mathbf{\hat r}\right)^2
{ \exp \left ( i\mathbf{k}\cdot \mathbf{r}\right ) \over k^2 +m^2 } =
\int_0^{\infty} {k^2 dk \over \left ( 2 \pi \right )^2 } \int_{-1}^{1} du u^2 {\exp\left( ikru \right) \over k^2 + m^2}
</math>
:<math>
=
{2} \int_0^{\infty} {k^2 dk \over \left ( 2 \pi \right )^2 }  {1 \over k^2 + m^2}
\left\{  {1\over kr }  \sin\left( kr \right) + 2 {1\over \left(kr\right)^2 } \cos\left( kr \right)
- 2 {1\over \left(kr\right)^3 } \sin\left( kr \right) \right \}
</math>
 
:<math>
=
{\exp \left( -m r \right) \over 4\pi r}
 
\left\{  g\left( mr\right) 
  \right \}
 
</math>
 
where
 
:<math>
g\left( mr\right)
= 1+{2\over mr}-{2 \over \left( mr \right)^2 } \left( e^{mr} -1 \right)
 
.</math>
 
Note that in the limit that
 
:<math>
m\rightarrow 0
</math>
 
that
:<math>
g\left( mr\right)  \rightarrow 1
</math>.
 
====Longitudinal potential with mass====
 
:<math>\int { d^3 k \over \left ( 2 \pi \right ) ^3 }
\; \mathbf{\hat{k}} \mathbf{\hat{k}} \;
{ \exp \left ( i\mathbf{k} \cdot \mathbf{r} \right ) \over k^2 +m^2 }
=
{1\over 2} {e^{  - m r } \over 4 \pi r }  \left[ \mathbf{1}- \mathbf{\hat{r}} \mathbf{\hat{r}} \right]
+
{1\over 2} {e^{  - m r } \over 4 \pi r }  \left\{ 1+  {2\over mr} 
- {2 \over \left( mr \right)^2 } \left( e^{mr} -1 \right)  \right \}
  \left[\mathbf{1}+ \mathbf{\hat{r}} \mathbf{\hat{r}}\right] </math>
 
where the hat indicates a unit vector in three dimensional space.
 
In the small m limit the integral reduces to
 
:<math>  {1\over 2} {1 \over 4 \pi r }  \left[ \mathbf 1 - \mathbf{\hat r} \mathbf{\hat r} \right] . 
</math>
 
To derive this result note:
 
:<math>  \int { d^3 k \over \left ( 2 \pi \right ) ^3 }  \mathbf{\hat k} \mathbf{\hat k}
{ \exp \left ( i\mathbf k \cdot \mathbf r \right ) \over k^2 +m^2 }
=
\int { d^3 k \over \left ( 2 \pi \right ) ^3 }
\left[
\left( \mathbf{\hat k}\cdot \mathbf{\hat r}\right)^2\mathbf{\hat r} \mathbf{\hat r}
+ \left( \mathbf{\hat k}\cdot \mathbf{\hat \theta}\right)^2\mathbf{\hat \theta} \mathbf{\hat \theta}
+ \left( \mathbf{\hat k}\cdot \mathbf{\hat \phi}\right)^2\mathbf{\hat \phi} \mathbf{\hat \phi}
\right]
{ \exp \left ( i\mathbf k \cdot \mathbf r \right ) \over k^2 +m^2 }
 
</math>
 
where the cross terms vanish. The integral can be written
 
:<math>
=
{1 \over 4 \pi r } \exp \left ( - m r \right ) \left\{ 1+  {2\over mr } 
-  {2\over \left(mr\right)^2 } \left( e^{mr} -1 \right) \right \}
\left\{\mathbf 1  - {1\over 2} \left[\mathbf 1 - \mathbf{\hat r} \mathbf{\hat r}\right] \right\}
+
\int_0^{\infty} {k^2 dk \over \left ( 2 \pi \right )^2 } \int_{-1}^{1} du  {\exp\left( ikru \right) \over k^2 + m^2}
{1\over 2}  \left[ \mathbf 1  - \mathbf{\hat r} \mathbf{\hat r} \right]
</math>
 
:<math>
=
{1\over 2} {e^{  - m r } \over 4 \pi r }  \left[ \mathbf 1 - \mathbf{\hat r} \mathbf{\hat r} \right]
+
{e^{  - m r } \over 4 \pi r }  \left\{ 1+  {2\over mr } 
-  {2\over \left(mr\right)^2 } \left( e^{mr} -1 \right) \right \}
\left\{ {1\over 2} \left[\mathbf 1 + \mathbf{\hat r} \mathbf{\hat r}\right] \right\}
 
</math>.
 
====Transverse potential with mass====
 
:<math>\int { d^3 k \over \left ( 2 \pi \right ) ^3 }
\; \left[ \mathbf{1} - \mathbf{\hat{k}} \mathbf{\hat{k}} \right] \;
{ \exp \left ( i \mathbf{k} \cdot \mathbf{r}\right ) \over k^2 +m^2 }
=  {1\over 2} {e^{  - m r } \over 4 \pi r }  \left\{   
  {2 \over \left( mr \right)^2  } \left( e^{mr} -1 \right) -  {2\over mr} \right \}
\left[\mathbf{1} + \mathbf{\hat{r}} \mathbf{\hat{r}}\right]</math>
 
In the small mr limit the integral goes to
 
:<math> 
 
{1\over 2} {1 \over 4 \pi r } 
\left[\mathbf 1 + \mathbf{\hat r} \mathbf{\hat r}\right]
  . </math>
 
For large distance, the integral falls off as the inverse cube of r
 
:<math> 
 
  {1\over 4 \pi m^2r^3 } 
\left[\mathbf 1 + \mathbf{\hat r} \mathbf{\hat r}\right]
  .</math>
 
For applications of this integral see [[Darwin Lagrangian]] and [[Static forces and virtual-particle exchange#Darwin interaction in a vacuum | Darwin interaction in a vacuum]].
 
====Angular integration in cylindrical coordinates====
 
There are two important integrals. The angular integration of an exponential in cylindrical coordinates can be written in terms of Bessel functions of the first kind<ref> {{cite book | author=I. S. Gradshteyn and I. M. Ryzhik    | title=Tables of Integrals, Seies, and Products| publisher= Academic Press| year=1965 | id=ISBN 65-29097}} p. 402 </ref><ref> {{cite book |author=Jackson, John D.|title=Classical Electrodynamics (3rd ed.)|publisher=Wiley|year=1998|id=ISBN 047130932X}} p. 113 </ref>
 
:<math> 
\int_0^{2 \pi} {d\varphi \over 2 \pi}  \exp\left( i p \cos\left( \varphi \right) \right)
=
J_0 \left( p \right)
  </math>
 
and
 
:<math> 
\int_0^{2 \pi} {d\varphi \over 2 \pi} \cos\left( \varphi \right) \exp\left( i p \cos\left( \varphi \right) \right)
=
i J_1 \left( p \right)
  . </math>
 
For applications of these integrals see [[Static forces and virtual-particle exchange#Magnetic interaction between current loops in a simple plasma or electron gas | Magnetic interaction between current loops in a simple plasma or electron gas]].
 
==Bessel functions==
 
===Integration of the cylindrical propagator with mass===
 
====First power of a Bessel function====
 
:<math> 
\int_0^{\infty} {k\; dk \over k^2 +m^2} J_0 \left( kr \right)
=
K_0 \left( mr \right)
  . </math>
 
See Abramowitz and Stegun.<ref> {{cite book | author=M. Abramowitz and I. Stegun    | title=Handbook of Mathematical Functions| publisher= Dover| year=1965 | id=ISBN 486-61272-4}} Section 11.4.44 </ref>
 
For <math> mr << 1 </math>, we have<ref> Jackson, p. 116 </ref>
 
:<math>
K_0 \left( mr \right) \rightarrow -\ln \left( {mr \over 2}\right) + 0.5772
.</math>
 
For an application of this integral see [[Static forces and virtual-particle exchange#Two line charges embedded in a plasma or electron gas | Two line charges embedded in a plasma or electron gas]].
 
====Squares of Bessel functions====
 
The integration of the propagator in cylindrical coordinates is<ref> I. S. Gradshteyn and I. M. Ryzhik, p. 679 </ref>
 
:<math> 
\int_0^{\infty} {k\; dk \over k^2 +m^2} J_1^2 \left( kr \right)
=
I_1 \left( mr \right)K_1 \left( mr \right)
  . </math>
 
For small mr the integral becomes
 
:<math> 
\int_o^{\infty} {k\; dk \over k^2 +m^2} J_1^2 \left( kr \right)
\rightarrow
{1\over 2 }\left[ 1 - {1\over 8} \left(mr\right)^2 \right]
  . </math>
 
For large mr the integral becomes
 
:<math> 
\int_o^{\infty} {k\; dk \over k^2 +m^2} J_1^2 \left( kr \right)
\rightarrow
{1\over 2}\;\left( {1\over mr}\right)
  . </math>
 
For applications of this integral see [[Static forces and virtual-particle exchange#Magnetic interaction between current loops in a simple plasma or electron gas | Magnetic interaction between current loops in a simple plasma or electron gas]].
 
In general
 
:<math> 
\int_0^{\infty} {k\; dk \over k^2 +m^2} J_{\nu}^2 \left( kr \right)
=
I_{\nu} \left( mr \right)K_{\nu} \left( mr \right)
\;\;\; \Re \;{\nu} > -1.
</math>
 
===Integration over a magnetic wave function===
The two-dimensional integral over a magnetic wave function is<ref> Abramowitz and Stegun, Section 11.4.28 </ref>
 
:<math> 
{2 a^{2n+2}\over n!}
\int_0^{\infty} { dr }\;r^{2n+1}\exp\left( -a^2 r^2\right) J_{0} \left( kr \right)
=
M\left( n+1, 1, -{k^2 \over 4a^2}\right)
  . </math>
 
Here, M is a [[confluent hypergeometric function]]. For an application of this integral see [[Static forces and virtual-particle exchange#Charge density spread over a wave function  |Charge density spread over a wave function]].
 
==See also==
*[[Relation between Schrödinger's equation and the path integral formulation of quantum mechanics]]
 
==References==
{{Reflist}}<!--added under references heading by script-assisted edit-->
 
{{Physics-footer}}
 
[[Category:Quantum field theory| ]]
[[Category:Mathematical physics]]

Latest revision as of 19:17, 9 April 2013

There are common integrals in quantum field theory that appear repeatedly.[1] These integrals are all variations and generalizations of gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the gaussian integral. Fourier integrals are also considered.

Variations on a simple gaussian integral

Gaussian integral

The first integral, with broad application outside of quantum field theory, is the gaussian integral.

Ge12x2dx

In physics the factor of 1/2 in the argument of the exponential is common.

Note:

G2=(e12x2dx)(e12y2dy)=2π0re12r2dr=2π0ewdw=2π.

Thus we obtain

e12x2dx=2π.


Slight generalization of the gaussian integral

e12ax2dx=2πa

where we have scaled

xxa.

Integrals of exponents and even powers of x

x2e12ax2dx=2ddae12ax2dx=2dda(2πa)12=(2πa)121a

and

x4e12ax2dx=(2dda)(2dda)e12ax2dx=(2dda)(2dda)(2πa)12=(2πa)123a2

In general

x2ne12ax2dx=(2πa)121an(2n1)(2n3)531=(2πa)121an(2n1)!!

Note that the integrals of exponents and odd powers of x are 0, due to odd symmetry.

Integrals with a linear term in the argument of the exponent

exp(12ax2+Jx)dx

This integral can be performed by completing the square.

(12ax2+Jx)=12a(x22Jxa+J2a2J2a2)=12a(xJa)2+J22a
exp(12ax2+Jx)dx=exp(J22a)exp[12a(xJa)2]dx=exp(J22a)exp(12ax2)dx=(2πa)12exp(J22a)

Integrals with an imaginary linear term in the argument of the exponent

The integral

exp(12ax2+iJx)dx=(2πa)12exp(J22a)

is proportional to the Fourier transform of the gaussian where J is the conjugate variable of x.

By again completing the square we see that the Fourier transform of a gaussian is also a gaussian, but in the conjugate variable. The larger a is, the narrower the gaussian in x and the wider the gaussian in J. This is a demonstration of the uncertainty principle.

Integrals with a complex argument of the exponent

The integral of interest is (for an example of an application see Relation between Schrödinger's equation and the path integral formulation of quantum mechanics)

exp(12iax2+iJx)dx.

We now assume that a and J may be complex.

Completing the square

(12iax2+iJx)=12ia(x2+2Jxa+(Ja)2(Ja)2)=12ai(x+Ja)2iJ22a.

By analogy with the previous integrals

exp(12iax2+iJx)dx=(2πia)12exp(iJ22a).

This result is valid as an integration in the complex plane as long as a has a positive imaginary part.

Gaussian integrals in higher dimensions

The one-dimensional integrals can be generalized to multiple dimensions.[2]

exp(12xAx+Jx)dnx=(2π)ndetAexp(12JA1J)

Here A is a real symmetric matrix.

This integral is performed by diagonalization of A with an orthogonal transformation

D=O1AO=OTAO

where D is a diagonal matrix and O is an orthogonal matrix. This decouples the variables and allows the integration to be performed as n one-dimensional integrations.

This is best illustrated with a two-dimensional example.

Example: Simple gaussian integration in two dimensions

The gaussian integral in two dimensions is

exp(12Aijxixj)d2x=(2π)2detA

where A is a two-dimensional symmetric matrix with components specified as

A=[accb]

and we have used the Einstein summation convention.

Diagonalize the matrix

The first step is to diagonalize the matrix.[3] Note that

AijxixjxTAx=xT(OOT)A(OOT)x=(xTO)(OTAO)(OTx)

where, since A is a real symmetric matrix, we can choose O to be an orthogonal matrix, and hence also a unitary matrix.

We choose O such that

DOTAO

is diagonal.

O can be obtained from the eigenvectors of A.

Eigenvalues of A

To find the eigenvectors of A one first finds the eigenvalues λ of A given by

[accb][uv]=λ[uv].

The eigenvalues are solutions of the characteristic polynomial

(aλ)(bλ)c2=0

which are

λ±=12(a+b)±12(ab)2+4c2.
Eigenvectors of A

Substitution of the eigenvalues back into the eigenvector equation yields

v=(aλ±)uc

or

v=cu(bλ±).

From the characteristic equation we know

(aλ±)c=c(bλ±).

Also note

(aλ±)c=(bλ)c.

The eigenvectors can be written

[1η(aλcη)]

and

[(bλ+cη)1η]

for the two eigenvectors. Here η is a normalizing factor given by

η=1+(aλc)2=1+(bλ+c)2.

It is easily verified that the two eigenvectors are orthogonal to each other.

Construction of the orthogonal matrix

The orthogonal matrix is constructed by assigning the normalized eigenvectors as columns in the orthogonal matrix

O=[1η(bλ+cη)(aλcη)1η].

Note that the determinant of O is equal to one.

If we define

sin(θ)(aλcη)

then the orthogonal matrix can be written

O=[cos(θ)sin(θ)sin(θ)cos(θ)]

which is simply a rotation of the eigenvectors.

The inverse is

O1=OT=[cos(θ)sin(θ)sin(θ)cos(θ)].
Diagonal matrix

The diagonal matrix becomes

D=OTAO=[λ00λ+]

with eigenvectors

[10]

and

[01]
Numerical example
A=[2111]

The eigenvalues are

λ±=32±52.

The eigenvectors are

1η[11252]

and

1η[12+521]

where

η=52+52 .

The orthogonal vector is

O=[1η1η(12+52)1η(1252)1η].

It is easily verified that the determinant of O is 1.

The inverse of O is

O=[1η1η(1252)1η(12+52)1η].

The diagonal matrix becomes

D=OTAO=[λ00λ+]=[(3252)00(32+52)]

with the eigenvectors

[10]

and

[01].

Rescale the variables and integrate

With the diagonalization the integral can be written

exp(12xTAx)d2x=exp(12j=12λjyj2)d2y

where

y=OTx .

Since the coordinate transformation is simply a rotation of coordinates the Jacobian determinant of the transformation is one yielding

dy2=dx2 .

The integrations can now be performed.

exp(12xTAx)d2x=exp(12j=12λjyj2)d2y=j=12(2πλj)12=((2π)2j=12λj)12=((2π)2det(O1AO))12=((2π)2det(A))12

which is the advertised solution.

Integrals with complex and linear terms in multiple dimensions

With the two-dimensional example it is now easy to see the generalization to the complex plane and to multiple dimensions.

Integrals with a linear term in the argument

exp(12xAx+Jx)dnx=(2π)ndetAexp(12JA1J)


Integrals with an imaginary linear term

exp(12xAx+iJx)dnx=(2π)ndetAexp(12JA1J)

Integrals with a complex quadratic term

exp(i2xAx+iJx)dnx=(2πi)ndetAexp(i2JA1J)

Integrals with differential operators in the argument

As an example consider the integral[4]

exp[d4x(12φA^φ+Jφ)]Dφ

where A^ is a differential operator with φ and J functions of spacetime, and Dφ indicates integration over all possible paths. In analogy with the matrix version of this integral the solution is

exp(12φA^φ+Jφ)Dφexp(12d4xd4yJ(x)D(xy)J(y))

where

A^D(xy)=δ4(xy)

and D(xy), called the propagator, is the inverse of A^, and δ4(xy) is the Dirac delta function.

Similar arguments yield

exp[d4x(12φA^φ+iJφ)]Dφexp(12d4xd4yJ(x)D(xy)J(y))

and

exp[id4x(12φA^φ+Jφ)]Dφexp(i2d4xd4yJ(x)D(xy)J(y)).

See Path-integral formulation of virtual-particle exchange for an application of this integral.

Integrals that can be approximated by the method of steepest descent

In quantum field theory n-dimensional integrals of the form

exp(1f(q))dnq

appear often. Here is the reduced Planck's constant and f is a function with a positive minimum at q=q0. These integrals can be approximated by the method of steepest descent.

For small values of Planck's constant, f can be expanded about its minimum

exp[1(f(q0)+12(qq0)2f(qq0)+)]dnq.

Here f is the n by n matrix of second derivatives evaluated at the minimum of the function.

If we neglect higher order terms this integral can be integrated explicitly.

exp[1(f(q))]dnqexp[1(f(q0))](2π)ndetf.

Integrals that can be approximated by the method of stationary phase

A common integral is a path integral of the form

exp(iS(q,q˙))Dq

where S(q,q˙) is the classical action and the integral is over all possible paths that a particle may take. In the limit of small the integral can be evaluated in the stationary phase approximation. In this approximation the integral is over the path in which the action is a minimum. Therefore, this approximation recovers the classical limit of mechanics.

Fourier integrals

Dirac delta function

The Dirac delta function in spacetime can be written as a Fourier transform[5]

d4k(2π)4exp(ik(xy))=δ4(xy).

In general, for any dimension N

dNk(2π)Nexp(ik(xy))=δN(xy).

Fourier integrals of forms of the Coulomb potential

Laplacian of 1/r

While not an integral, the identity in three-dimensional Euclidean space

14π2(1r)=δ(r)

where

r2=rr

is a consequence of Gauss's theorem and can be used to derive integral identities. For an example see Longitudinal and transverse vector fields.

This identity implies that the Fourier integral representation of 1/r is

d3k(2π)3exp(ikr)k2=14πr.

Yukawa Potential: The Coulomb potential with mass

The Yukawa potential in three dimensions can be represented as an integral over a Fourier transform[6]

d3k(2π)3exp(ikr)k2+m2=emr4πr

where

r2=rr

and

k2=kk.

See Static forces and virtual-particle exchange for an application of this integral.

In the small m limit the integral reduces to

14πr.

To derive this result note:

d3k(2π)3exp(ikr)k2+m2=0k2dk(2π)211duexp(ikru)k2+m2
=2r0kdk(2π)2sin(kr)k2+m2=1irkdk(2π)2exp(ikr)k2+m2
=1irkdk(2π)2exp(ikr)(k+im)(kim)=1ir2πi(2π)2im2imexp(mr)

Modified Coulomb potential with mass

d3k(2π)3(k^r^)2exp(ikr)k2+m2=emr4πr{1+2mr2(mr)2(emr1)}

where the hat indicates a unit vector in three dimensional space.

In the small m limit the integral goes to zero.

To derive this result note:

d3k(2π)3(k^r^)2exp(ikr)k2+m2=0k2dk(2π)211duu2exp(ikru)k2+m2
=20k2dk(2π)21k2+m2{1krsin(kr)+21(kr)2cos(kr)21(kr)3sin(kr)}
=exp(mr)4πr{g(mr)}

where

g(mr)=1+2mr2(mr)2(emr1).

Note that in the limit that

m0

that

g(mr)1.

Longitudinal potential with mass

d3k(2π)3k^k^exp(ikr)k2+m2=12emr4πr[1r^r^]+12emr4πr{1+2mr2(mr)2(emr1)}[1+r^r^]

where the hat indicates a unit vector in three dimensional space.

In the small m limit the integral reduces to

1214πr[1r^r^].

To derive this result note:

d3k(2π)3k^k^exp(ikr)k2+m2=d3k(2π)3[(k^r^)2r^r^+(k^θ^)2θ^θ^+(k^ϕ^)2ϕ^ϕ^]exp(ikr)k2+m2

where the cross terms vanish. The integral can be written

=14πrexp(mr){1+2mr2(mr)2(emr1)}{112[1r^r^]}+0k2dk(2π)211duexp(ikru)k2+m212[1r^r^]
=12emr4πr[1r^r^]+emr4πr{1+2mr2(mr)2(emr1)}{12[1+r^r^]}.

Transverse potential with mass

d3k(2π)3[1k^k^]exp(ikr)k2+m2=12emr4πr{2(mr)2(emr1)2mr}[1+r^r^]

In the small mr limit the integral goes to

1214πr[1+r^r^].

For large distance, the integral falls off as the inverse cube of r

14πm2r3[1+r^r^].

For applications of this integral see Darwin Lagrangian and Darwin interaction in a vacuum.

Angular integration in cylindrical coordinates

There are two important integrals. The angular integration of an exponential in cylindrical coordinates can be written in terms of Bessel functions of the first kind[7][8]

02πdφ2πexp(ipcos(φ))=J0(p)

and

02πdφ2πcos(φ)exp(ipcos(φ))=iJ1(p).

For applications of these integrals see Magnetic interaction between current loops in a simple plasma or electron gas.

Bessel functions

Integration of the cylindrical propagator with mass

First power of a Bessel function

0kdkk2+m2J0(kr)=K0(mr).

See Abramowitz and Stegun.[9]

For mr<<1, we have[10]

K0(mr)ln(mr2)+0.5772.

For an application of this integral see Two line charges embedded in a plasma or electron gas.

Squares of Bessel functions

The integration of the propagator in cylindrical coordinates is[11]

0kdkk2+m2J12(kr)=I1(mr)K1(mr).

For small mr the integral becomes

okdkk2+m2J12(kr)12[118(mr)2].

For large mr the integral becomes

okdkk2+m2J12(kr)12(1mr).

For applications of this integral see Magnetic interaction between current loops in a simple plasma or electron gas.

In general

0kdkk2+m2Jν2(kr)=Iν(mr)Kν(mr)ν>1.

Integration over a magnetic wave function

The two-dimensional integral over a magnetic wave function is[12]

2a2n+2n!0drr2n+1exp(a2r2)J0(kr)=M(n+1,1,k24a2).

Here, M is a confluent hypergeometric function. For an application of this integral see Charge density spread over a wave function.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Template:Physics-footer

  1. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 pp. 13-15
  2. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  3. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  4. Zee, pp. 21-22.
  5. Zee, p. 23.
  6. Zee, p. 26, 29.
  7. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 p. 402
  8. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 p. 113
  9. 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534 Section 11.4.44
  10. Jackson, p. 116
  11. I. S. Gradshteyn and I. M. Ryzhik, p. 679
  12. Abramowitz and Stegun, Section 11.4.28