Levi-Civita parallelogramoid: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Myasuda
m References: added missing diacritics
 
en>Chris the speller
m restore space that the template removed for some strange reason
Line 1: Line 1:
I am Hal nevertheless don't like when people use my full title. The job I've been occupying for years is a filing assistant and it is something I really like. My friends say it's not great me but what Appreciate doing is digital art and I am going to never stop doing that will. Michigan is where our house is but I will have to transfer in a whole year or 2. Check out the latest news on my website: http://www.vimeo.com/89403357<br><br>Also visit my blog post kim kardashian blowjob ([http://www.vimeo.com/89403357 have a peek at this web-site])
This '''list of mathematical series''' contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.
*Here, <math>0^0</math> is taken to have the value 1.
*<math>B_n(x)</math> is a [[Bernoulli polynomial]].
*<math>B_n</math> is a [[Bernoulli number]], and here, <math>B_1=-\frac{1}{2}.</math>
*<math>E_n</math> is an [[Euler number]].
*<math>\zeta(s)</math> is the [[Riemann zeta function]].
*<math>\Gamma(z)</math> is the [[gamma function]].
*<math>\psi_n(z)</math> is a [[polygamma function]].
*<math>\operatorname{Li}_s(z)</math> is a [[polylogarithm]].
 
==Sums of powers==
See [[Faulhaber's formula]].
*<math>\sum_{k=0}^m k^{n-1}=\frac{B_n(m+1)-B_n}{n}\,\!</math>
The first few values are:
*<math>\sum_{k=1}^m k=\frac{m(m+1)}{2}\,\!</math>
 
*<math>\sum_{k=1}^m k^2=\frac{m(m+1)(2m+1)}{6}=\frac{m^3}{3}+\frac{m^2}{2}+\frac{m}{6}\,\!</math>
 
*<math>\sum_{k=1}^m k^3 =\left[\frac{m(m+1)}{2}\right]^2=\frac{m^4}{4}+\frac{m^3}{2}+\frac{m^2}{4}\,\!</math>
 
See [[zeta constants]].
*<math>\zeta(2n)=\sum^{\infty}_{k=1} \frac{1}{k^{2n}}=(-1)^{n+1} \frac{B_{2n} (2\pi)^{2n}}{2(2n)!} </math>
The first few values are:
*<math>\zeta(2)=\sum^{\infty}_{k=1} \frac{1}{k^2}=\frac{\pi^2}{6}\,\!</math> (the [[Basel problem]])
 
*<math>\zeta(4)=\sum^{\infty}_{k=1} \frac{1}{k^4}=\frac{\pi^4}{90}\,\!</math>
 
*<math>\zeta(6)=\sum^{\infty}_{k=1} \frac{1}{k^6}=\frac{\pi^6}{945}\,\!</math>
 
==Power series==
 
===Low-order polylogarithms===
Finite sums:
*<math>\sum_{k=0}^{n} z^k = \frac{1-z^{n+1}}{1-z}\,\!</math>, ([[geometric series]])
 
*<math>\sum_{k=1}^n k z^k = z\frac{1-(n+1)z^n+nz^{n+1}}{(1-z)^2}\,\!</math>
 
*<math>\sum_{k=1}^n k^2 z^k = z\frac{1+z-(n+1)^2z^n+(2n^2+2n-1)z^{n+1}-n^2z^{n+2}}{(1-z)^3} \,\!</math>
 
*<math>\sum_{k=1}^n k^m z^k = \left(z \frac{d}{dz}\right)^m \frac{z-z^{n+1}}{1-z}</math>
 
Infinite sums, valid for <math>|z|<1</math> (see [[polylogarithm]]):
*<math>\operatorname{Li}_n(z)=\sum_{k=1}^{\infty} \frac{z^k}{k^n}\,\!</math>
The following is a useful property to calculate low-integer-order polylogarithms recursively in [[Closed-form expression|closed form]]:
*<math>\frac{d}{dz}\operatorname{Li}_n(z)=\frac{\operatorname{Li}_{n-1}(z)}{z}\,\!</math>
 
*<math>\operatorname{Li}_{1}(z)=\sum_{k=1}^\infty \frac{z^k}{k}=-\ln(1-z)\!</math>
 
*<math>\operatorname{Li}_{0}(z)=\sum_{k=1}^\infty z^k=\frac{z}{1-z}\!</math>
 
*<math>\operatorname{Li}_{-1}(z)=\sum_{k=1}^\infty k z^k=\frac{z}{(1-z)^2}\,\!</math>
 
*<math>\operatorname{Li}_{-2}(z)=\sum_{k=1}^\infty k^2 z^k=\frac{z(1+z)}{(1-z)^3}\,\!</math>
 
*<math>\operatorname{Li}_{-3}(z)=\sum_{k=1}^\infty k^3 z^k =\frac{z(1+4z+z^2)}{(1-z)^4}\,\!</math>
 
*<math>\operatorname{Li}_{-4}(z)=\sum_{k=1}^\infty k^4 z^k =\frac{z(1+z)(1+10z+z^2)}{(1-z)^5}\,\!</math>
 
===Exponential function===
*<math>\sum_{k=0}^\infty \frac{z^k}{k!} = e^z\,\!</math>
 
*<math>\sum_{k=0}^\infty k\frac{z^k}{k!} = z e^z\,\!</math> (cf. mean of [[Poisson distribution]])
 
*<math>\sum_{k=0}^\infty k^2 \frac{z^k}{k!} = (z + z^2) e^z\,\!</math> (cf. [[second moment]] of Poisson distribution)
 
*<math>\sum_{k=0}^\infty k^3 \frac{z^k}{k!} = (z + 3z^2 + z^3) e^z\,\!</math>
 
*<math>\sum_{k=0}^\infty k^4 \frac{z^k}{k!} = (z + 7z^2 + 6z^3 + z^4) e^z\,\!</math>
 
*<math>\sum_{k=0}^\infty k^n \frac{z^k}{k!} = z \frac{d}{dz} \sum_{k=0}^\infty k^{n-1} \frac{z^k}{k!}\,\! = e^z T_{n}(z) </math>
 
where <math>T_{n}(z)</math> is the [[Touchard polynomials]].
 
===Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions===
*<math>\sum_{k=0}^\infty \frac{(-1)^k z^{2k+1}}{(2k+1)!}=\sin z\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)!}=\sinh z\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{(-1)^k z^{2k}}{(2k)!}=\cos z\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{z^{2k}}{(2k)!}=\cosh z\,\!</math>
 
*<math>\sum_{k=1}^\infty \frac{(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}=\tan z, |z|<\frac{\pi}{2}\,\!</math>
 
*<math>\sum_{k=1}^\infty \frac{(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}=\tanh z, |z|<\frac{\pi}{2}\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{(-1)^k2^{2k}B_{2k}z^{2k-1}}{(2k)!}=\cot z, |z|<\pi\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{2^{2k}B_{2k}z^{2k-1}}{(2k)!}=\coth z, |z|<\pi\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}=\csc z, |z|<\pi\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}=\operatorname{csch} z, |z|<\pi\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{(-1)^kE_{2k}z^{2k}}{(2k)!}=\sec z, |z|<\frac{\pi}{2}\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{E_{2k}z^{2k}}{(2k)!}=\operatorname{sech} z, |z|<\frac{\pi}{2}\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{(2k)!z^{2k+1}}{2^{2k}(k!)^2(2k+1)}=\arcsin z, |z|\le1\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{(-1)^k(2k)!z^{2k+1}}{2^{2k}(k!)^2(2k+1)}=\operatorname{arsinh} {z}, |z|\le1\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{(-1)^kz^{2k+1}}{2k+1}=\arctan z, |z|<1\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{z^{2k+1}}{2k+1}=\operatorname{arctanh} z, |z|<1\,\!</math>
 
*<math>\ln2+\sum_{k=1}^\infty \frac{(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^2}=\ln\left(1+\sqrt{1+z^2}\right), |z|\le1\,\!</math>
 
===Modified-factorial denominators===
*<math>\sum^{\infty}_{k=0} \frac{(4k)!}{2^{4k} \sqrt{2} (2k)! (2k+1)!} z^k = \sqrt{\frac{1-\sqrt{1-z}}{z}}, |z|<1</math><ref name="gfo">[http://www.math.upenn.edu/~wilf/gfologyLinked2.pdf generatingfunctionology]</ref>
 
*<math>\sum^{\infty}_{k=0} \frac{2^{2k} (k!)^2}{(k+1) (2k+1)!} z^{2k+2} = \left(\arcsin{z}\right)^2, |z|\le1 </math><ref name="gfo"/>
 
*<math>\sum^{\infty}_{n=0} \frac{\prod_{k=0}^{n-1}(4k^2+\alpha^2)}{(2n)!} z^{2n} + \sum^{\infty}_{n=0} \frac{\alpha \prod_{k=0}^{n-1}[(2k+1)^2+\alpha^2]}{(2n+1)!}  z^{2n+1} = e^{\alpha \arcsin{z}}, |z|\le1 </math>
 
=== Binomial coefficients ===
*<math>(1+z)^\alpha = \sum_{k=0}^\infty {\alpha \choose k} z^k, |z|<1</math> (see [[Binomial theorem]])
*<ref name="ctcs">[http://www.tug.org/texshowcase/cheat.pdf Theoretical computer science cheat sheet]</ref> <math>\sum_{k=0}^\infty {{\alpha+k-1} \choose k} z^k = \frac{1}{(1-z)^\alpha}, |z|<1</math>
 
*<ref name="ctcs"/> <math>\sum_{k=0}^\infty \frac{1}{k+1}{2k \choose k} z^k = \frac{1-\sqrt{1-4z}}{2z}, |z|<\frac{1}{4}</math>, generating function of the [[Catalan numbers]]
 
*<ref name="ctcs"/> <math>\sum_{k=0}^\infty {2k \choose k} z^k = \frac{1}{\sqrt{1-4z}}, |z|<\frac{1}{4}</math>, generating function of the [[Central binomial coefficient]]s
 
*<ref name="ctcs"/> <math>\sum_{k=0}^\infty {2k + \alpha \choose k} z^k = \frac{1}{\sqrt{1-4z}}\left(\frac{1-\sqrt{1-4z}}{2z}\right)^\alpha, |z|<\frac{1}{4}</math>
 
===[[Harmonic number]]s===
*<math> \sum_{k=1}^\infty H_k z^k = \frac{-\ln(1-z)}{1-z}, |z|<1</math>
 
*<math> \sum_{k=1}^\infty \frac{H_k}{k+1} z^{k+1} = \frac{1}{2}\left[\ln(1-z)\right]^2, \qquad |z|<1</math>
 
*<math> \sum_{k=1}^\infty \frac{(-1)^{k-1} H_{2k}}{2k+1} z^{2k+1} = \frac{1}{2} \arctan{z} \log{(1+z^2)}, \qquad |z|<1 </math><ref name="gfo"/>
 
*<math> \sum_{n=0}^\infty \sum_{k=0}^{2n} \frac{(-1)^k}{2k+1} \frac{z^{4n+2}}{4n+2} = \frac{1}{4} \arctan{z} \log{\frac{1+z}{1-z}},\qquad  |z|<1 </math><ref name="gfo"/>
 
== Binomial coefficients ==
*<math>\sum_{k=0}^n {n \choose k} = 2^n</math>
 
*<math>\sum_{k=0}^n (-1)^k {n \choose k} = 0</math>
 
*<math>\sum_{k=0}^n {k \choose m} = { n+1 \choose m+1 }</math>
 
*<math>\sum_{k=0}^n {m+k-1 \choose k} = { n+m \choose n }</math> (see [[Multiset#Recurrence relation|Multiset]])
 
*<math>\sum_{k=0}^n {\alpha \choose k}{\beta \choose n-k} = {\alpha+\beta \choose n}</math> (see [[Vandermonde identity]])
 
== Trigonometric functions ==
Sums of [[sine]]s and [[cosine]]s arise in [[Fourier series]].
 
*<math>\sum_{k=1}^\infty \frac{\sin(k\theta)}{k}=\frac{\pi-\theta}{2}, 0<\theta<2\pi\,\!</math>
 
*<math>\sum_{k=1}^\infty \frac{\cos(k\theta)}{k}=-\frac{1}{2}\ln(2-2\cos\theta), \theta\in\mathbb{R}\,\!</math>
 
*<math>\sum_{k=0}^\infty \frac{\sin[(2k+1)\theta]}{2k+1}=\frac{\pi}{4}, 0<\theta<\pi\,\!</math>
 
*<math>B_n(x)=-\frac{n!}{2^{n-1}\pi^n}\sum_{k=1}^\infty \frac{1}{k^n}\cos\left(2\pi kx-\frac{\pi n}{2}\right), 0<x<1\,\!</math><ref>{{cite web|url=http://functions.wolfram.com/Polynomials/BernoulliB2/06/02/|title=Bernoulli polynomials: Series representations (subsection 06/02)|accessdate=2 June 2011}}</ref>
 
*<math>\sum_{k=0}^n \sin(\theta+k\alpha)=\frac{\sin\frac{(n+1)\alpha}{2}\sin(\theta+\frac{n\alpha}{2})}{\sin\frac{\alpha}{2}}\,\!</math>
 
*<math>\sum_{k=1}^{n-1} \sin\frac{\pi k}{n}=\cot\frac{\pi}{2n}\,\!</math>
 
*<math>\sum_{k=1}^{n-1} \sin\frac{2\pi k}{n}=0\,\!</math>
 
*<math>\sum_{k=0}^{n-1} \csc^2\left(\theta+\frac{\pi k}{n}\right)=n^2\csc^2(n\theta)\,\!</math><ref>{{cite web|last=Hofbauer|first=Josef|title=A simple proof of 1+1/2^2+1/3^2+...=PI^2/6 and related identities|url=http://homepage.univie.ac.at/josef.hofbauer/02amm.pdf|accessdate=2 June 2011}}</ref>
 
*<math>\sum_{k=1}^{n-1} \csc^2\frac{\pi k}{n}=\frac{n^2-1}{3}\,\!</math>
 
*<math>\sum_{k=1}^{n-1} \csc^4\frac{\pi k}{n}=\frac{n^4+10n^2-11}{45}\,\!</math>
 
== Rational functions ==
*<math>\sum_{m=b+1}^{\infty} \frac{b}{m^2 - b^2} = \frac{1}{2} H_{2b}</math>
 
*<math>\sum^{\infty}_{m=1} \frac{y}{m^2+y^2} = -\frac{1}{2y}+\frac{\pi}{2}\coth(\pi y)</math><ref>[[Eric W. Weisstein|Weisstein, Eric W.]], "[http://mathworld.wolfram.com/RiemannZetaFunction.html Riemann Zeta Function]" from [[MathWorld]], equation 52</ref>
 
*An infinite series of any [[rational function]] of <math>n</math> can be reduced to a finite series of [[polygamma function]]s, by use of [[partial fraction decomposition]].<ref>[http://people.math.sfu.ca/~cbm/aands/ Abramowitz and Stegun]</ref> This fact can also be applied to finite series of rational functions, allowing the result to be computed in [[constant time]] even when the series contains a large number of terms.
 
==See also==
{{Div col|cols=3}}
* [[Series (mathematics)]]
* [[List of integrals]]
* [[Summation#Identites|Summation]]
* [[Taylor series]]
* [[Binomial theorem]]
* [[Gregory's series]]
* [[On-Line Encyclopedia of Integer Sequences]]
{{Div col end}}
 
==Notes==
{{Reflist|30em}}
 
==References==
*Many books with a [[list of integrals]] also have a list of series.
 
[[Category:Mathematical series]]
[[Category:Mathematics-related lists|Series]]
[[Category:Mathematical tables|Series]]

Revision as of 19:26, 8 February 2013

This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.

Sums of powers

See Faulhaber's formula.

The first few values are:

See zeta constants.

The first few values are:

Power series

Low-order polylogarithms

Finite sums:

Infinite sums, valid for |z|<1 (see polylogarithm):

The following is a useful property to calculate low-integer-order polylogarithms recursively in closed form:

Exponential function

where Tn(z) is the Touchard polynomials.

Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions

Modified-factorial denominators

Binomial coefficients

Harmonic numbers

Binomial coefficients

Trigonometric functions

Sums of sines and cosines arise in Fourier series.

Rational functions

See also

Organisational Psychologist Alfonzo Lester from Timmins, enjoys pinochle, property developers in new launch singapore property and textiles. Gets motivation through travel and just spent 7 days at Alejandro de Humboldt National Park.

42 year-old Environmental Consultant Merle Eure from Hudson, really loves snowboarding, property developers in new launch ec singapore and cosplay. Maintains a trip blog and has lots to write about after visiting Chhatrapati Shivaji Terminus (formerly Victoria Terminus).

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

References