Levi-Civita parallelogramoid: Difference between revisions
en>Myasuda m →References: added missing diacritics |
en>Chris the speller m restore space that the template removed for some strange reason |
||
Line 1: | Line 1: | ||
This '''list of mathematical series''' contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. | |||
*Here, <math>0^0</math> is taken to have the value 1. | |||
*<math>B_n(x)</math> is a [[Bernoulli polynomial]]. | |||
*<math>B_n</math> is a [[Bernoulli number]], and here, <math>B_1=-\frac{1}{2}.</math> | |||
*<math>E_n</math> is an [[Euler number]]. | |||
*<math>\zeta(s)</math> is the [[Riemann zeta function]]. | |||
*<math>\Gamma(z)</math> is the [[gamma function]]. | |||
*<math>\psi_n(z)</math> is a [[polygamma function]]. | |||
*<math>\operatorname{Li}_s(z)</math> is a [[polylogarithm]]. | |||
==Sums of powers== | |||
See [[Faulhaber's formula]]. | |||
*<math>\sum_{k=0}^m k^{n-1}=\frac{B_n(m+1)-B_n}{n}\,\!</math> | |||
The first few values are: | |||
*<math>\sum_{k=1}^m k=\frac{m(m+1)}{2}\,\!</math> | |||
*<math>\sum_{k=1}^m k^2=\frac{m(m+1)(2m+1)}{6}=\frac{m^3}{3}+\frac{m^2}{2}+\frac{m}{6}\,\!</math> | |||
*<math>\sum_{k=1}^m k^3 =\left[\frac{m(m+1)}{2}\right]^2=\frac{m^4}{4}+\frac{m^3}{2}+\frac{m^2}{4}\,\!</math> | |||
See [[zeta constants]]. | |||
*<math>\zeta(2n)=\sum^{\infty}_{k=1} \frac{1}{k^{2n}}=(-1)^{n+1} \frac{B_{2n} (2\pi)^{2n}}{2(2n)!} </math> | |||
The first few values are: | |||
*<math>\zeta(2)=\sum^{\infty}_{k=1} \frac{1}{k^2}=\frac{\pi^2}{6}\,\!</math> (the [[Basel problem]]) | |||
*<math>\zeta(4)=\sum^{\infty}_{k=1} \frac{1}{k^4}=\frac{\pi^4}{90}\,\!</math> | |||
*<math>\zeta(6)=\sum^{\infty}_{k=1} \frac{1}{k^6}=\frac{\pi^6}{945}\,\!</math> | |||
==Power series== | |||
===Low-order polylogarithms=== | |||
Finite sums: | |||
*<math>\sum_{k=0}^{n} z^k = \frac{1-z^{n+1}}{1-z}\,\!</math>, ([[geometric series]]) | |||
*<math>\sum_{k=1}^n k z^k = z\frac{1-(n+1)z^n+nz^{n+1}}{(1-z)^2}\,\!</math> | |||
*<math>\sum_{k=1}^n k^2 z^k = z\frac{1+z-(n+1)^2z^n+(2n^2+2n-1)z^{n+1}-n^2z^{n+2}}{(1-z)^3} \,\!</math> | |||
*<math>\sum_{k=1}^n k^m z^k = \left(z \frac{d}{dz}\right)^m \frac{z-z^{n+1}}{1-z}</math> | |||
Infinite sums, valid for <math>|z|<1</math> (see [[polylogarithm]]): | |||
*<math>\operatorname{Li}_n(z)=\sum_{k=1}^{\infty} \frac{z^k}{k^n}\,\!</math> | |||
The following is a useful property to calculate low-integer-order polylogarithms recursively in [[Closed-form expression|closed form]]: | |||
*<math>\frac{d}{dz}\operatorname{Li}_n(z)=\frac{\operatorname{Li}_{n-1}(z)}{z}\,\!</math> | |||
*<math>\operatorname{Li}_{1}(z)=\sum_{k=1}^\infty \frac{z^k}{k}=-\ln(1-z)\!</math> | |||
*<math>\operatorname{Li}_{0}(z)=\sum_{k=1}^\infty z^k=\frac{z}{1-z}\!</math> | |||
*<math>\operatorname{Li}_{-1}(z)=\sum_{k=1}^\infty k z^k=\frac{z}{(1-z)^2}\,\!</math> | |||
*<math>\operatorname{Li}_{-2}(z)=\sum_{k=1}^\infty k^2 z^k=\frac{z(1+z)}{(1-z)^3}\,\!</math> | |||
*<math>\operatorname{Li}_{-3}(z)=\sum_{k=1}^\infty k^3 z^k =\frac{z(1+4z+z^2)}{(1-z)^4}\,\!</math> | |||
*<math>\operatorname{Li}_{-4}(z)=\sum_{k=1}^\infty k^4 z^k =\frac{z(1+z)(1+10z+z^2)}{(1-z)^5}\,\!</math> | |||
===Exponential function=== | |||
*<math>\sum_{k=0}^\infty \frac{z^k}{k!} = e^z\,\!</math> | |||
*<math>\sum_{k=0}^\infty k\frac{z^k}{k!} = z e^z\,\!</math> (cf. mean of [[Poisson distribution]]) | |||
*<math>\sum_{k=0}^\infty k^2 \frac{z^k}{k!} = (z + z^2) e^z\,\!</math> (cf. [[second moment]] of Poisson distribution) | |||
*<math>\sum_{k=0}^\infty k^3 \frac{z^k}{k!} = (z + 3z^2 + z^3) e^z\,\!</math> | |||
*<math>\sum_{k=0}^\infty k^4 \frac{z^k}{k!} = (z + 7z^2 + 6z^3 + z^4) e^z\,\!</math> | |||
*<math>\sum_{k=0}^\infty k^n \frac{z^k}{k!} = z \frac{d}{dz} \sum_{k=0}^\infty k^{n-1} \frac{z^k}{k!}\,\! = e^z T_{n}(z) </math> | |||
where <math>T_{n}(z)</math> is the [[Touchard polynomials]]. | |||
===Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions=== | |||
*<math>\sum_{k=0}^\infty \frac{(-1)^k z^{2k+1}}{(2k+1)!}=\sin z\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)!}=\sinh z\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{(-1)^k z^{2k}}{(2k)!}=\cos z\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{z^{2k}}{(2k)!}=\cosh z\,\!</math> | |||
*<math>\sum_{k=1}^\infty \frac{(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}=\tan z, |z|<\frac{\pi}{2}\,\!</math> | |||
*<math>\sum_{k=1}^\infty \frac{(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}=\tanh z, |z|<\frac{\pi}{2}\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{(-1)^k2^{2k}B_{2k}z^{2k-1}}{(2k)!}=\cot z, |z|<\pi\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{2^{2k}B_{2k}z^{2k-1}}{(2k)!}=\coth z, |z|<\pi\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}=\csc z, |z|<\pi\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}=\operatorname{csch} z, |z|<\pi\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{(-1)^kE_{2k}z^{2k}}{(2k)!}=\sec z, |z|<\frac{\pi}{2}\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{E_{2k}z^{2k}}{(2k)!}=\operatorname{sech} z, |z|<\frac{\pi}{2}\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{(2k)!z^{2k+1}}{2^{2k}(k!)^2(2k+1)}=\arcsin z, |z|\le1\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{(-1)^k(2k)!z^{2k+1}}{2^{2k}(k!)^2(2k+1)}=\operatorname{arsinh} {z}, |z|\le1\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{(-1)^kz^{2k+1}}{2k+1}=\arctan z, |z|<1\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{z^{2k+1}}{2k+1}=\operatorname{arctanh} z, |z|<1\,\!</math> | |||
*<math>\ln2+\sum_{k=1}^\infty \frac{(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^2}=\ln\left(1+\sqrt{1+z^2}\right), |z|\le1\,\!</math> | |||
===Modified-factorial denominators=== | |||
*<math>\sum^{\infty}_{k=0} \frac{(4k)!}{2^{4k} \sqrt{2} (2k)! (2k+1)!} z^k = \sqrt{\frac{1-\sqrt{1-z}}{z}}, |z|<1</math><ref name="gfo">[http://www.math.upenn.edu/~wilf/gfologyLinked2.pdf generatingfunctionology]</ref> | |||
*<math>\sum^{\infty}_{k=0} \frac{2^{2k} (k!)^2}{(k+1) (2k+1)!} z^{2k+2} = \left(\arcsin{z}\right)^2, |z|\le1 </math><ref name="gfo"/> | |||
*<math>\sum^{\infty}_{n=0} \frac{\prod_{k=0}^{n-1}(4k^2+\alpha^2)}{(2n)!} z^{2n} + \sum^{\infty}_{n=0} \frac{\alpha \prod_{k=0}^{n-1}[(2k+1)^2+\alpha^2]}{(2n+1)!} z^{2n+1} = e^{\alpha \arcsin{z}}, |z|\le1 </math> | |||
=== Binomial coefficients === | |||
*<math>(1+z)^\alpha = \sum_{k=0}^\infty {\alpha \choose k} z^k, |z|<1</math> (see [[Binomial theorem]]) | |||
*<ref name="ctcs">[http://www.tug.org/texshowcase/cheat.pdf Theoretical computer science cheat sheet]</ref> <math>\sum_{k=0}^\infty {{\alpha+k-1} \choose k} z^k = \frac{1}{(1-z)^\alpha}, |z|<1</math> | |||
*<ref name="ctcs"/> <math>\sum_{k=0}^\infty \frac{1}{k+1}{2k \choose k} z^k = \frac{1-\sqrt{1-4z}}{2z}, |z|<\frac{1}{4}</math>, generating function of the [[Catalan numbers]] | |||
*<ref name="ctcs"/> <math>\sum_{k=0}^\infty {2k \choose k} z^k = \frac{1}{\sqrt{1-4z}}, |z|<\frac{1}{4}</math>, generating function of the [[Central binomial coefficient]]s | |||
*<ref name="ctcs"/> <math>\sum_{k=0}^\infty {2k + \alpha \choose k} z^k = \frac{1}{\sqrt{1-4z}}\left(\frac{1-\sqrt{1-4z}}{2z}\right)^\alpha, |z|<\frac{1}{4}</math> | |||
===[[Harmonic number]]s=== | |||
*<math> \sum_{k=1}^\infty H_k z^k = \frac{-\ln(1-z)}{1-z}, |z|<1</math> | |||
*<math> \sum_{k=1}^\infty \frac{H_k}{k+1} z^{k+1} = \frac{1}{2}\left[\ln(1-z)\right]^2, \qquad |z|<1</math> | |||
*<math> \sum_{k=1}^\infty \frac{(-1)^{k-1} H_{2k}}{2k+1} z^{2k+1} = \frac{1}{2} \arctan{z} \log{(1+z^2)}, \qquad |z|<1 </math><ref name="gfo"/> | |||
*<math> \sum_{n=0}^\infty \sum_{k=0}^{2n} \frac{(-1)^k}{2k+1} \frac{z^{4n+2}}{4n+2} = \frac{1}{4} \arctan{z} \log{\frac{1+z}{1-z}},\qquad |z|<1 </math><ref name="gfo"/> | |||
== Binomial coefficients == | |||
*<math>\sum_{k=0}^n {n \choose k} = 2^n</math> | |||
*<math>\sum_{k=0}^n (-1)^k {n \choose k} = 0</math> | |||
*<math>\sum_{k=0}^n {k \choose m} = { n+1 \choose m+1 }</math> | |||
*<math>\sum_{k=0}^n {m+k-1 \choose k} = { n+m \choose n }</math> (see [[Multiset#Recurrence relation|Multiset]]) | |||
*<math>\sum_{k=0}^n {\alpha \choose k}{\beta \choose n-k} = {\alpha+\beta \choose n}</math> (see [[Vandermonde identity]]) | |||
== Trigonometric functions == | |||
Sums of [[sine]]s and [[cosine]]s arise in [[Fourier series]]. | |||
*<math>\sum_{k=1}^\infty \frac{\sin(k\theta)}{k}=\frac{\pi-\theta}{2}, 0<\theta<2\pi\,\!</math> | |||
*<math>\sum_{k=1}^\infty \frac{\cos(k\theta)}{k}=-\frac{1}{2}\ln(2-2\cos\theta), \theta\in\mathbb{R}\,\!</math> | |||
*<math>\sum_{k=0}^\infty \frac{\sin[(2k+1)\theta]}{2k+1}=\frac{\pi}{4}, 0<\theta<\pi\,\!</math> | |||
*<math>B_n(x)=-\frac{n!}{2^{n-1}\pi^n}\sum_{k=1}^\infty \frac{1}{k^n}\cos\left(2\pi kx-\frac{\pi n}{2}\right), 0<x<1\,\!</math><ref>{{cite web|url=http://functions.wolfram.com/Polynomials/BernoulliB2/06/02/|title=Bernoulli polynomials: Series representations (subsection 06/02)|accessdate=2 June 2011}}</ref> | |||
*<math>\sum_{k=0}^n \sin(\theta+k\alpha)=\frac{\sin\frac{(n+1)\alpha}{2}\sin(\theta+\frac{n\alpha}{2})}{\sin\frac{\alpha}{2}}\,\!</math> | |||
*<math>\sum_{k=1}^{n-1} \sin\frac{\pi k}{n}=\cot\frac{\pi}{2n}\,\!</math> | |||
*<math>\sum_{k=1}^{n-1} \sin\frac{2\pi k}{n}=0\,\!</math> | |||
*<math>\sum_{k=0}^{n-1} \csc^2\left(\theta+\frac{\pi k}{n}\right)=n^2\csc^2(n\theta)\,\!</math><ref>{{cite web|last=Hofbauer|first=Josef|title=A simple proof of 1+1/2^2+1/3^2+...=PI^2/6 and related identities|url=http://homepage.univie.ac.at/josef.hofbauer/02amm.pdf|accessdate=2 June 2011}}</ref> | |||
*<math>\sum_{k=1}^{n-1} \csc^2\frac{\pi k}{n}=\frac{n^2-1}{3}\,\!</math> | |||
*<math>\sum_{k=1}^{n-1} \csc^4\frac{\pi k}{n}=\frac{n^4+10n^2-11}{45}\,\!</math> | |||
== Rational functions == | |||
*<math>\sum_{m=b+1}^{\infty} \frac{b}{m^2 - b^2} = \frac{1}{2} H_{2b}</math> | |||
*<math>\sum^{\infty}_{m=1} \frac{y}{m^2+y^2} = -\frac{1}{2y}+\frac{\pi}{2}\coth(\pi y)</math><ref>[[Eric W. Weisstein|Weisstein, Eric W.]], "[http://mathworld.wolfram.com/RiemannZetaFunction.html Riemann Zeta Function]" from [[MathWorld]], equation 52</ref> | |||
*An infinite series of any [[rational function]] of <math>n</math> can be reduced to a finite series of [[polygamma function]]s, by use of [[partial fraction decomposition]].<ref>[http://people.math.sfu.ca/~cbm/aands/ Abramowitz and Stegun]</ref> This fact can also be applied to finite series of rational functions, allowing the result to be computed in [[constant time]] even when the series contains a large number of terms. | |||
==See also== | |||
{{Div col|cols=3}} | |||
* [[Series (mathematics)]] | |||
* [[List of integrals]] | |||
* [[Summation#Identites|Summation]] | |||
* [[Taylor series]] | |||
* [[Binomial theorem]] | |||
* [[Gregory's series]] | |||
* [[On-Line Encyclopedia of Integer Sequences]] | |||
{{Div col end}} | |||
==Notes== | |||
{{Reflist|30em}} | |||
==References== | |||
*Many books with a [[list of integrals]] also have a list of series. | |||
[[Category:Mathematical series]] | |||
[[Category:Mathematics-related lists|Series]] | |||
[[Category:Mathematical tables|Series]] |
Revision as of 19:26, 8 February 2013
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.
- Here, is taken to have the value 1.
- is a Bernoulli polynomial.
- is a Bernoulli number, and here,
- is an Euler number.
- is the Riemann zeta function.
- is the gamma function.
- is a polygamma function.
- is a polylogarithm.
Sums of powers
See Faulhaber's formula.
The first few values are:
See zeta constants.
The first few values are:
- (the Basel problem)
Power series
Low-order polylogarithms
Finite sums:
- , (geometric series)
Infinite sums, valid for (see polylogarithm):
The following is a useful property to calculate low-integer-order polylogarithms recursively in closed form:
Exponential function
- (cf. mean of Poisson distribution)
- (cf. second moment of Poisson distribution)
where is the Touchard polynomials.
Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions
Modified-factorial denominators
Binomial coefficients
- (see Binomial theorem)
- [2]
- [2] , generating function of the Catalan numbers
- [2] , generating function of the Central binomial coefficients
Harmonic numbers
Binomial coefficients
- (see Multiset)
- (see Vandermonde identity)
Trigonometric functions
Sums of sines and cosines arise in Fourier series.
Rational functions
- An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition.[6] This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
See also
Organisational Psychologist Alfonzo Lester from Timmins, enjoys pinochle, property developers in new launch singapore property and textiles. Gets motivation through travel and just spent 7 days at Alejandro de Humboldt National Park.
- Series (mathematics)
- List of integrals
- Summation
- Taylor series
- Binomial theorem
- Gregory's series
- On-Line Encyclopedia of Integer Sequences
42 year-old Environmental Consultant Merle Eure from Hudson, really loves snowboarding, property developers in new launch ec singapore and cosplay. Maintains a trip blog and has lots to write about after visiting Chhatrapati Shivaji Terminus (formerly Victoria Terminus).
Notes
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
References
- Many books with a list of integrals also have a list of series.