Automorphic number: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Felix116
References: Replaced no-longer-appropriate link with better version.
en>PrimeHunter
Undid revision 594284676 by 122.105.159.56 (talk). Goodbye
Line 1: Line 1:
The following is a list of [[integral]]s ([[antiderivative]] functions) of [[rational function]]s.  
If you happen to having trouble seeing a casino game while you are participating in it, try adjusting this particular brightness environment. Might make the display good clear, enhancing your gaming expertise. And why don't we face it, you will not achieve any kind akin to success if you cannot see what you're doing, so make the game meet your needs.<br><br>Here is more information regarding [http://prometeu.net how to hack clash of clans with cydia] take a look at the website. when you are locating a definite handle system tough on use, optimize the surroundings within your activity. The default manage podium might not be for everyone. Some different people prefer a better display screen, a set off more sensitive management or simply perhaps an inverted pecking order. In several video recordings gaming, you may dominate these from the setting's area.<br><br>Assuming you have little ones who experience video games, then conscious how [https://Www.Gov.uk/search?q=challenging challenging] it really is always to pull them out with the t. v.. Their eye can continually be stuck towards the keep tabs on for hours as the businesses play their preferred computer games. If you want aid regulating your your child's clash of clans Hack time, then your pursuing article has some recommendations for you.<br><br>Look at note of how much money your teen would be shelling out for online gaming. These kinds of products aren't cheap and as well then there is highly the option of looking for the best much more add-ons found in the game itself. Establish month-to-month and on an annual basis restrictions on the size of money that has the ability to be spent on games. Also, have conversations with the youngsters about budgeting.<br><br>Make sure your child's xbox play enjoying. Video gaming are now rated typically like films and which can help. This enables you to prevent an eye on the specific information your kids is normally exposed to. Depending upon your child's age, continue to keep my man clear of video online video media that happen to prove meant for people the people that are more fully grew than him.<br><br>The particular world can be influenced by supply and will need. We shall look over the Greek-Roman model. Using special care that can highlight the role because of clash of clans get into tool no survey inside of a the vast framework that typically usually this provides.<br><br>Pc games or computer games have increased in popularity nowadays, not really with the younger generation, but also with grownups as well. There are many games available, ranging of one's intellectual to the each day - your options would be limitless. Online role playing games are one of the most popular games anywhere on the earth. With this popularity, plenty consumers are exploring and trying to identify ways to go along with whole game as very fast as they can; possibilities for using computer How to [http://Www.Bbc.Co.uk/search/?q=compromise compromise] in clash of clans range from simply attempting to own your own good friends stare at you all through awe, or getting additional of game money a person really can sell later, or simply just for you to rid the game within the fun factor for the opposite players.
For other types of functions, see [[lists of integrals]].
 
<!--CAUTION: before 'correcting' one of these integrals, please check that the amended integral doesn't simply differ from the existing version by a constant term. NOTE: a constant *factor* in the argument of ln() may amount to a constant term in the integral. -->
 
== Miscellaneous integrands ==
 
:<math>\int\frac{f'(x)}{f(x)} \, dx= \ln\left|f(x)\right| + C</math>
 
:<math>\int\frac{1}{x^2+a^2} \, dx = \frac{1}{a}\arctan\frac{x}{a}\,\! + C</math>
:<math>\int\frac{1}{x^2-a^2} \, dx = \begin{cases} \displaystyle -\frac{1}{a}\,\operatorname{arctanh}\frac{x}{a} = \frac{1}{2a}\ln\frac{a-x}{a+x} + C  & \text{(for }|x| < |a|\mbox{)} \\[12pt] \displaystyle -\frac{1}{a}\,\operatorname{arccoth}\frac{x}{a} = \frac{1}{2a}\ln\frac{x-a}{x+a} + C & \text{(for }|x| > |a| \mbox{)} \end{cases}</math>
 
: <math>\int \frac{dx}{x^{2^n} + 1} = \sum_{k=1}^{2^{n-1}} \left \{ \frac{1}{2^{n-1}} \left [ \sin \left(\frac{(2k -1) \pi}{2^n}\right) \arctan\left[\left(x - \cos \left(\frac{(2k -1) \pi}{2^n} \right) \right ) \csc \left(\frac{(2k -1) \pi}{2^n} \right) \right] \right] - \frac{1}{2^n} \left [ \cos \left(\frac{(2k -1) \pi}{2^n} \right) \ln \left | x^2 - 2 x \cos \left(\frac{(2k -1) \pi}{2^n} \right) + 1 \right |  \right ] \right \} + C </math>
<br />
Any rational function can be integrated using '''[[partial fractions in integration]]''', by decomposing the rational function into a sum of functions of the form:
: <math>\frac{a}{(x-b)^n}</math>, and <math>\frac{ax + b}{\left((x-c)^2+d^2\right)^n}.</math>
 
== Integrands of the form ''x''<sup>''m''</sup>(''a x'' + ''b'')<sup>''n''</sup> ==
 
:<math>\int\frac{1}{ax + b} \, dx= \frac{1}{a}\ln\left|ax + b\right| + C</math>
::More generally,<ref>"[http://golem.ph.utexas.edu/category/2012/03/reader_survey_logx_c.html Reader Survey: log|''x''| + ''C'']", Tom Leinster, ''The ''n''-category Café'', March 19, 2012</ref>
::<math>\int\frac{1}{ax + b} \, dx= \begin{cases}
\frac{1}{a}\ln\left|ax + b\right| + C^- & x < -b/a \\
\frac{1}{a}\ln\left|ax + b\right| + C^+ & x > -b/a
\end{cases}</math>
:<math>\int (ax + b)^n \, dx= \frac{(ax + b)^{n+1}}{a(n + 1)} + C \qquad\text{(for } n\neq -1\mbox{)}\,\!</math> ([[Cavalieri's quadrature formula]])
<br>
:<math>\int\frac{x}{ax + b} \, dx= \frac{x}{a} - \frac{b}{a^2}\ln\left|ax + b\right| + C</math>
:<math>\int\frac{x}{(ax + b)^2} \, dx= \frac{b}{a^2(ax + b)} + \frac{1}{a^2}\ln\left|ax + b\right| + C</math>
:<math>\int\frac{x}{(ax + b)^n} \, dx= \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} + C \qquad\text{(for } n\not\in \{1, 2\}\mbox{)}</math>
:<math>\int x(ax + b)^n \, dx= \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} + C \qquad\text{(for }n \not\in \{-1, -2\}\mbox{)}</math>
<br>
:<math>\int\frac{x^2}{ax + b} \, dx= \frac{b^2\ln(\left|ax + b\right|)}{a^3}+\frac{ax^2 - 2bx}{2a^2} + C</math>
:<math>\int\frac{x^2}{(ax + b)^2} \, dx= \frac{1}{a^3}\left(ax - 2b\ln\left|ax + b\right| - \frac{b^2}{ax + b}\right) + C</math>
:<math>\int\frac{x^2}{(ax + b)^3} \, dx= \frac{1}{a^3}\left(\ln\left|ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right) + C</math>
:<math>\int\frac{x^2}{(ax + b)^n} \, dx= \frac{1}{a^3}\left(-\frac{(ax + b)^{3-n}}{(n-3)} + \frac{2b (ax + b)^{2-n}}{(n-2)} - \frac{b^2 (ax + b)^{1-n}}{(n - 1)}\right) + C \qquad\text{(for } n\not\in \{1, 2, 3\}\mbox{)}</math>
<br>
:<math>\int\frac{1}{x(ax + b)} \, dx = -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right| + C</math>
:<math>\int\frac{1}{x^2(ax+b)} \, dx = -\frac{1}{bx} + \frac{a}{b^2}\ln\left|\frac{ax+b}{x}\right| + C</math>
:<math>\int\frac{1}{x^2(ax+b)^2} \, dx = -a\left(\frac{1}{b^2(ax+b)} + \frac{1}{ab^2x} - \frac{2}{b^3}\ln\left|\frac{ax+b}{x}\right|\right) + C</math>
 
== Integrands of the form ''x''<sup>''m''</sup> / (''a x''<sup>2</sup> + ''b x'' + ''c'')<sup>''n''</sup> ==
 
For <math>a\neq 0:</math>
<br>
:<math>\int\frac{1}{ax^2+bx+c} dx =
\begin{cases}
\displaystyle \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} + C & \text{(for }4ac-b^2>0\mbox{)} \\[12pt]
\displaystyle -\frac{2}{\sqrt{b^2-4ac}}\,\mathrm{arctanh}\frac{2ax+b}{\sqrt{b^2-4ac}} + C = \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| + C & \text{(for }4ac-b^2<0\mbox{)} \\[12pt]
\displaystyle -\frac{2}{2ax+b} + C & \text{(for }4ac-b^2=0\mbox{)}
\end{cases}</math>
<br>
:<math>\int\frac{x}{ax^2+bx+c} \, dx = \frac{1}{2a}\ln\left|ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c} + C</math>
<br>
:<math>\int\frac{mx+n}{ax^2+bx+c} \, dx = \begin{cases}
\displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} + C &\text{(for }4ac-b^2>0\mbox{)} \\[12pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\mathrm{arctanh}\frac{2ax+b}{\sqrt{b^2-4ac}} + C &\text{(for }4ac-b^2<0\mbox{)} \\[12pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a(2ax+b)} + C &\text{(for }4ac-b^2=0\mbox{)}\end{cases}</math>
<br>
: <math>\int\frac{1}{(ax^2+bx+c)^n} \, dx= \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{1}{(ax^2+bx+c)^{n-1}} \, dx + C</math>
<br>
: <math>\int\frac{x}{(ax^2+bx+c)^n} \, dx= -\frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{1}{(ax^2+bx+c)^{n-1}} \, dx + C</math>
<br>
: <math>\int\frac{1}{x(ax^2+bx+c)} \, dx= \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{1}{ax^2+bx+c} \, dx + C</math>
 
== Integrands of the form ''x''<sup>''m''</sup> (''a'' + ''b x''<sup>''n''</sup>)<sup>''p''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m+1} \left(a+b\,x^n\right)^p}{m+n\,p+1}\,+\,
  \frac{a\,n\,p}{m+n\,p+1}\int x^m \left(a+b\,x^n\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  -\frac{x^{m+1} \left(a+b\,x^n\right)^{p+1}}{a\,n (p+1)}\,+\,
  \frac{m+n (p+1)+1}{a\,n (p+1)}\int x^m \left(a+b\,x^n\right)^{p+1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m+1} \left(a+b\,x^n\right)^p}{m+1}\,-\,
  \frac{b\,n\,p}{m+1}\int x^{m+n} \left(a+b\,x^n\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m-n+1} \left(a+b\,x^n\right)^{p+1}}{b\,n (p+1)}\,-\,
  \frac{m-n+1}{b\,n (p+1)}\int x^{m-n} \left(a+b\,x^n\right)^{p+1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m-n+1} \left(a+b\,x^n\right)^{p+1}}{b (m+n\,p+1)}\,-\,
  \frac{a (m-n+1)}{b (m+n\,p+1)}\int x^{m-n}\left(a+b\,x^n\right)^pdx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m+1} \left(a+b\,x^n\right)^{p+1}}{a (m+1)}\,-\,
  \frac{b (m+n (p+1)+1)}{a (m+1)}\int x^{m+n}\left(a+b\,x^n\right)^pdx
</math>
 
== Integrands of the form (''A'' + ''B x'') (''a'' + ''b x'')<sup>''m''</sup> (''c'' + ''d x'')<sup>''n''</sup> (''e'' + ''f x'')<sup>''p''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'', ''n'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>(a+b\,x)^m (c+d\,x)^n (e+f\,x)^p</math> by setting ''B'' to 0.
 
:<math>
\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
  -\frac{(A\,b-a\,B)(a+b\,x)^{m+1} (c+d\,x)^n(e+f\,x)^{p+1}}{b (m+1) (a\,f-b\,e)}\,+\,
  \frac{1}{b (m+1) (a\,f-b\,e)}\,\cdot
</math><blockquote><math>
  \int (b\,c(m+1) (A\,f-B\,e)+(A\,b-a\,B) (n\,d\,e+c\,f(p+1))+d(b(m+1) (A\,f-B\,e)+f(n+p+1) (A\,b-a\,B))x)(a+b\,x)^{m+1} (c+d\,x)^{n-1}(e+f\,x)^p dx
</math></blockquote>
 
:<math>
\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
  \frac{B(a+b\,x)^m (c+d\,x)^{n+1}(e+f\,x)^{p+1}}{d\,f(m+n+p+2)}\,+\,
  \frac{1}{d\,f(m+n+p+2)}\,\cdot
</math><blockquote><math>
  \int (A\,a\,d\,f(m+n+p+2)-B (b\,c\,e\,m+a(d\,e(n+1)+c\,f(p+1)))+(A\,b\,d\,f(m+n+p+2)+B (a\,d\,f\,m-b(d\,e(m+n+1)+c\,f(m+p+1)))) x)(a+b\,x)^{m-1} (c+d\,x)^n(e+f\,x)^p dx
</math></blockquote>
 
:<math>
\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
  \frac{(A\,b-a\,B)(a+b\,x)^{m+1} (c+d\,x)^{n+1}(e+f\,x)^{p+1}}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}\,+\,
  \frac{1}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}\,\cdot
</math><blockquote><math>
  \int ((m+1) (A (a\,d\,f-b(c\,f+d\,e))+B\,b\,c\,e)-(A\,b-a\,B) (d\,e(n+1)+c\,f(p+1))-d\,f(m+n+p+3) (A\,b-a\,B)x)(a+b\,x)^{m+1} (c+d\,x)^n(e+f\,x)^p dx
</math></blockquote>
 
== Integrands of the form ''x''<sup>''m''</sup> (''A'' + ''B x''<sup>''n''</sup>) (''a'' + ''b x''<sup>''n''</sup>)<sup>''p''</sup> (''c'' + ''d x''<sup>''n''</sup>)<sup>''q''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'', ''p'' and ''q'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^q</math> and <math>x^m\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^q</math> by setting ''m'' and/or ''B'' to 0.
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  -\frac{(A\,b-a\,B) x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{a\,b\,n (p+1)}\,+\,
  \frac{1}{a\,b\,n (p+1)}\,\cdot
</math><blockquote><math>
  \int x^m\left(c (A\,b\,n (p+1)+(A\,b-a\,B) (m+1))+d (A\,b\,n (p+1)+(A\,b-a\,B) (m+n\,q+1)) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^{q-1}dx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{B\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{b (m+n (p+q+1)+1)}\,+\,
  \frac{1}{b (m+n (p+q+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^m\left(c ((A\,b-a\,B) (1+m)+A\,b\,n (1+p+q))+(d(A\,b-a\,B) (1+m)+B\,n\,q(b\,c-a\,d)+A\,b\,d\,n (1+p+q))\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^{q-1}dx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  -\frac{(A\,b-a\,B) x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{a\,n (b\,c-a\,d) (p+1)}\,+\,
  \frac{1}{a\,n(b\,c-a\,d)(p+1)}\,\cdot
</math><blockquote><math>
  \int x^m\left(c(A\,b-a\,B)(m+1)+A\,n (b\,c-a\,d)(p+1)+d(A\,b-a\,B) (m+n (p+q+2)+1) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^qdx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{B\,x^{m-n+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{b\,d (m+n (p+q+1)+1)}\,-\,
  \frac{1}{b\,d (m+n (p+q+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^{m-n}\left(a\,B\,c (m-n+1)+(a\,B\,d (m+n\,q+1)-b (-B\,c (m+n\,p+1)+A\,d (m+n (p+q+1)+1))) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{A\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{a\,c (m+1)}\,+\,
  \frac{1}{a\,c (m+1)}\,\cdot
</math><blockquote><math>
  \int x^{m+n}\left(a\,B\,c (m+1)-A (b\,c+a\,d) (m+n+1)-A\,n (b\,c\,p+a\,d\,q)-A\,b\,d (m+n (p+q+2)+1) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{A\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{a (m+1)}\,-\,
  \frac{1}{a (m+1)}\,\cdot
</math><blockquote><math>
  \int x^{m+n}\left(c(A\,b-a\,B)(m+1)+A\,n (b\,c (p+1)+a\,d\,q)+d ((A\,b-a\,B) (m+1)+A\,b\,n (p+q+1)) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^{q-1}dx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{(A\,b-a\,B) x^{m-n+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{b\,n (b\,c-a\,d) (p+1)}\,-\,
  \frac{1}{b\,n(b\,c-a\,d)(p+1)}\,\cdot
</math><blockquote><math>
  \int x^{m-n}\left(c(A\,b-a\,B)(m-n+1)+(d(A\,b-a\,B)(m+n\,q+1)-b\,n(B\,c-A\,d)(p+1)) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^qdx
</math></blockquote>
 
== Integrands of the form (''d'' + ''e x'')<sup>''m''</sup> (''a'' + ''b x'' + ''c x''<sup>2</sup>)<sup>''p''</sup> when ''b''<sup>2</sup> − 4 ''a c'' = 0 ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x+c\,x^2\right)^p</math> when <math>b^2-4\,a\,c=0</math> by setting ''m'' to 0.
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+1)}\,-\,
  \frac{p (d+e\,x)^{m+2}(b+2 c\,x) \left(a+b\,x+c\,x^2\right)^{p-1}}{e^2(m+1)(m+2 p+1)}\,+\,
  \frac{p(2 p-1)(2 c\,d-b\,e)}{e^2(m+1)(m+2 p+1)} \int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^2\right)^{p-1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+1)}\,-\,
  \frac{p (d+e\,x)^{m+2}(b+2\,c\,x)\left(a+b\,x+c\,x^2\right)^{p-1}}{e^2(m+1)(m+2)}\,+\,
  \frac{2\,c\,p\,(2\,p-1)}{e^2(m+1)(m+2)} \int (d+e\,x)^{m+2} \left(a+b\,x+c\,x^2\right)^{p-1}dx
</math>
 
:<math>
\int (d+e\,x)^m\left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{e(m+2 p+2)(d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)(2p+1)(2 c\,d-b\,e)}\,+\,
  \frac{(d+e\,x)^{m+1}(b+2 c\,x) \left(a+b\,x+c\,x^2\right)^p}{(2p+1)(2 c\,d-b\,e)}\,+\,
  \frac{e^2m(m+2 p+2)}{(p+1)(2p+1)(2 c\,d-b\,e)} \int (d+e\,x)^{m-1} \left(a+b\,x+c\,x^2\right)^{p+1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{e\,m(d+e\,x)^{m-1} \left(a+b\,x+c\,x^2\right)^{p+1}}{2c (p+1) (2p+1)}\,+\,
  \frac{(d+e\,x)^m(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{2c (2p+1)}\,+\,
  \frac{e^2m(m-1)}{2c (p+1) (2p+1)} \int (d+e\,x)^{m-2} \left(a+b\,x+c\,x^2\right)^{p+1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+2p+1)}\,-\,
  \frac{p(2 c\,d-b\,e)(d+e\,x)^{m+1}(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^{p-1}}{2c\,e^2(m+2 p)(m+2p+1)}\,+\,
  \frac{p (2 p-1)(2 c\,d-b\,e)^2}{2c\,e^2(m+2 p)(m+2p+1)} \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p-1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{2c\,e(m+2p+2)(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1) (2 p+1)(2 c\,d-b\,e)^2}\,+\,
  \frac{(d+e\,x)^{m+1}(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{(2 p+1)(2 c\,d-b\,e)}\,+\,
  \frac{2c\,e^2(m+2p+2)(m+2 p+3)}{(p+1) (2 p+1)(2 c\,d-b\,e)^2} \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p+1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^m (b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{2c (m+2p+1)}\,+\,
  \frac{m(2 c\,d-b\,e)}{2c (m+2p+1)} \int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^2\right)^pdx
</math>
 
:<math>
\int (d+e\,x)^m\left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{(d+e\,x)^{m+1} (b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{(m+1)(2 c\,d-b\,e)}\,+\,
  \frac{2c (m+2p+2)}{(m+1)(2 c\,d-b\,e)} \int (d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^pdx
</math>
 
== Integrands of the form (''d'' + ''e x'')<sup>''m''</sup> (''A'' + ''B x'') (''a'' + ''b x'' + ''c x''<sup>2</sup>)<sup>''p''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x+c\,x^2\right)^p</math> and <math>(d+e\,x)^m \left(a+b\,x+c\,x^2\right)^p</math> by setting ''m'' and/or ''B'' to 0.
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} (A\,e (m+2 p+2)-B\,d (2 p+1)+e\,B (m+1) x) \left(a+b\,x+c\,x^2\right)^p}{e^2(m+1) (m+2 p+2)}\,+\,
  \frac{1}{e^2(m+1) (m+2 p+2)}p\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^{m+1} (B (b\,d+2 a\,e+2 a\,e\,m+2 b\,d\,p)-A\,b\,e (m+2 p+2)+(B (2 c\,d+b\,e+b\,e m+4 c\,d\,p)-2 A\,c\,e (m+2 p+2))x)\left(a+b\,x+c\,x^2\right)^{p-1}dx
</math></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^m (A\,b-2 a\,B-(b\,B-2 A\,c) x)\left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)\left(b^2-4 a\,c\right) }\,+\,
  \frac{1}{(p+1)\left(b^2-4 a\,c\right) }\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^{m-1}(B (2 a\,e\,m+b\,d (2 p+3))-A (b\,e\,m+2 c\,d (2 p+3))+e(b\,B-2 A\,c) (m+2 p+3) x)\left(a+b\,x+c\,x^2\right)^{p+1}dx
</math></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} (A\,c\,e (m+2 p+2)-B (c\,d+2 c\,d\,p-b\,e\,p)+B\,c\,e(m+2 p+1) x)\left(a+b\,x+c\,x^2\right)^p}{c\,e^2(m+2 p+1) (m+2 p+2)}\,-\,
  \frac{p}{c\,e^2(m+2 p+1) (m+2 p+2)}\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^m (A\,c\,e (b\,d-2 a\,e) (m+2 p+2)+B (a\,e (b\,e-2 c\,d\,m+b\,e\,m)+b\,d (b\,e\,p-c\,d-2 c\,d\,p))+
</math><blockquote><math>
  \left(A\,c\,e (2 c\,d-b\,e) (m+2 p+2)-B \left(-b^2 e^2 (m+p+1)+2 c^2 d^2 (1+2 p)+c\,e (b\,d (m-2 p)+2 a\,e (m+2 p+1))\right)\right) x)\left(a+b\,x+c\,x^2\right)^{p-1}dx
</math></blockquote></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} \left(A \left(b\,c\,d-b^2 e+2 a\,c\,e\right)-a\,B (2 c\,d-b\,e)+c (A (2 c\,d-b\,e)-B (b\,d-2 a\,e)) x\right)\left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)\left(b^2-4 a\,c\right) \left(c\,d^2-b\,d\,e+a\,e^2\right)}\,+\,
</math><blockquote><math>
  \frac{1}{(p+1)\left(b^2-4 a\,c\right) \left(c\,d^2-b\,d\,e+a\,e^2\right)}\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^m (A \left(b\,c\,d\,e (2 p-m+2)+b^2 e^2 (m+p+2)-2 c^2 d^2 (3+2 p)-2 a\,c\,e^2 (m+2 p+3)\right)-
</math><blockquote><math>
  B (a\,e (b\,e-2 c\,d m+b\,e\,m)+b\,d (-3 c\,d+b\,e-2 c\,d\,p+b\,e\,p))+c\,e(B (b\,d-2 a\,e)-A (2 c\,d-b\,e)) (m+2 p+4) x)\left(a+b\,x+c\,x^2\right)^{p+1}dx
</math></blockquote></blockquote></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{B(d+e\,x)^m\left(a+b\,x+c\,x^2\right)^{p+1}}{c(m+2 p+2)}\,+\,
  \frac{1}{c(m+2 p+2)}\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^{m-1} (m(A\,c\,d-a\,B\,e)-d(b\,B-2 A\,c)(p+1) +((B\,c\,d-b\,B\,e+A\,c\,e) m-e(b\,B-2 A\,c)(p+1))x) \left(a+b\,x+c\,x^2\right)^pdx
</math></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{(B\,d-A\,e) (d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^{p+1}}{(m+1)\left(c\,d^2-b\,d\,e+a\,e^2\right)}\,+\,
  \frac{1}{(m+1)\left(c\,d^2-b\,d\,e+a\,e^2\right)}\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^{m+1} ((A\,c\,d-A\,b\,e+a\,B\,e) (m+1)+b (B\,d-A\,e) (p+1)+c (B\,d-A\,e) (m+2 p+3) x)\left(a+b\,x+c\,x^2\right)^pdx
</math></blockquote>
 
== Integrands of the form ''x''<sup>''m''</sup> (''a'' + ''b x''<sup>''n''</sup> + ''c x''<sup>2''n''</sup>)<sup>''p''</sup> when ''b''<sup>2</sup> − 4 ''a c'' = 0 ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n+c\,x^{2 n}\right)^p</math> when <math>b^2-4\,a\,c=0</math> by setting ''m'' to 0.
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{ x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{m+2 n\,p+1}\,+\,
  \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+1)(m+2 n\,p+1)}\,-\,
  \frac{b\,n^2 p (2 p-1)}{(m+1)(m+2 n\,p+1)} \int x^{m+n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{(m+n(2 p-1)+1) x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{(m+1)(m+n+1)}\,+\,
  \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+1)(m+n+1)}\,+\,
  \frac{2 c\,p\,n^2(2 p-1)}{(m+1)(m+n+1)} \int x^{m+2n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{(m+n(2 p+1)+1) x^{m-n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{b\,n^2 (p+1) (2p+1)}\,-\,
  \frac{x^{m+1} \left(b+2 c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{b\,n (2p+1)}\,-\,
  \frac{(m-n+1)(m+n(2 p+1)+1)}{b\,n^2 (p+1) (2p+1)} \int x^{m-n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  -\frac{(m-3 n-2 n\,p+1) x^{m-2n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{2 c\,n^2(p+1)(2p+1)}\,-\,
  \frac{ x^{m-2n+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2 c\,n(2p+1)}\,+\,
  \frac{(m-n+1)(m-2n+1)}{2 c\,n^2(p+1)(2p+1)} \int x^{m-2n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{m+2 n\,p+1}\,+\,
  \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+2 n\,p+1) (m+n(2 p-1)+1)}\,+\,
  \frac{2 a\,n^2 p (2 p-1)}{(m+2 n\,p+1) (m+n(2 p-1)+1)} \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  -\frac{(m+n+2 n\,p+1) x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{2 a\,n^2 (p+1) (2p+1)}\,-\,
  \frac{x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2 a\,n(2p+1)}\,+\,
  \frac{(m+n(2 p+1)+1)(m+2 n (p+1)+1)}{2 a\,n^2 (p+1) (2p+1)} \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math>
 
:<math>
\int x^m\left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{x^{m-n+1} \left(b+2c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2c (m+2n\,p+1)}\,-\,
  \frac{b (m-n+1)}{2c (m+2n\,p+1)} \int x^{m-n} \left(a+b\,x^n+c\,x^{2 n}\right)^p dx
</math>
 
:<math>
\int x^m\left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{x^{m+1} \left(b+2c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{b (m+1)}\,-\,
  \frac{2c (m+n(2 p+1)+1)}{b (m+1)} \int x^{m+n} \left(a+b\,x^n+c\,x^{2 n}\right)^p dx
</math>
 
== Integrands of the form ''x''<sup>''m''</sup> (''A'' + ''B x''<sup>''n''</sup>) (''a'' + ''b x''<sup>''n''</sup> + ''c x''<sup>2''n''</sup>)<sup>''p''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n+c\,x^{2 n}\right)^p</math> and <math>x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p</math> by setting ''m'' and/or ''B'' to 0.
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{x^{m+1} \left(A (m+n (2 p+1)+1)+B (m+1) x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^p}{(m+1) (m+n (2 p+1)+1)}\,+\,
  \frac{n\,p}{(m+1) (m+n (2 p+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^{m+n} \left(2 a\,B (m+1)-A\,b (m+n (2 p+1)+1)+(b\,B (m+1)-2\,A\,c (m+n (2 p+1)+1)) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{x^{m-n+1} \left(A\,b-2 a\,B-(b\,B-2 A\,c) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{n(p+1) \left(b^2-4 a\,c\right)}\,+\,
  \frac{1}{n(p+1) \left(b^2-4 a\,c\right)}\,\cdot
</math><blockquote><math>
  \int x^{m-n}\left((m-n+1)(2 a\,B-A\,b)+(m+2n (p+1)+1) (b\,B-2 A\,c) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{x^{m+1} \left(b\,B\,n\,p+A\,c (m+n (2 p+1)+1)+B\,c (m+2 n\,p+1) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{c (m+2 n\,p+1) (m+n (2 p+1)+1)}\,+\,
  \frac{n\,p}{c (m+2 n\,p+1) (m+n (2 p+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^m \left(2 a\,A\,c (m+n (2 p+1)+1)-a\,b\,B (m+1)+\left(2 a\,B\,c (m+2 n\,p+1)+A\,b\,c (m+n (2 p+1)+1)-b^2 B (m+n\,p+1)\right) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  -\frac{x^{m+1} \left(A\,b^2-a\,b\,B-2 a\,A\,c+(A\,b-2 a\,B) c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{a\,n(p+1) \left(b^2-4 a\,c\right)}\,+\,
  \frac{1}{a\,n(p+1) \left(b^2-4 a\,c\right)}\,\cdot
</math><blockquote><math>
  \int x^m \left((m+n (p+1)+1) A\,b^2-a\,b\,B(m+1)-2(m+2n (p+1)+1)a\,A\,c+(m+n (2p+3)+1)(A\,b-2 a\,B) c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{B\,x^{m-n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{c (m+n (2 p+1)+1)}\,-\,
  \frac{1}{c (m+n (2 p+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^{m-n} \left(a\,B (m-n+1)+(b\,B (m+n\,p+1)-A\,c (m+n (2 p+1)+1)) x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{A\,x^{m+1} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{a(m+1)}\,+\,
  \frac{1}{a(m+1)}\,\cdot
</math><blockquote><math>
  \int x^{m+n} \left(a\,B (m+1)-A\,b (m+n (p+1)+1)-A\,c (m+2 n(p+1)+1) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^pdx
</math></blockquote>
 
== References ==
{{reflist}}
 
{{Lists of integrals}}
 
[[Category:Integrals|Rational functions]]
[[Category:Mathematics-related lists|Integrals of rational functions]]

Revision as of 00:26, 7 February 2014

If you happen to having trouble seeing a casino game while you are participating in it, try adjusting this particular brightness environment. Might make the display good clear, enhancing your gaming expertise. And why don't we face it, you will not achieve any kind akin to success if you cannot see what you're doing, so make the game meet your needs.

Here is more information regarding how to hack clash of clans with cydia take a look at the website. when you are locating a definite handle system tough on use, optimize the surroundings within your activity. The default manage podium might not be for everyone. Some different people prefer a better display screen, a set off more sensitive management or simply perhaps an inverted pecking order. In several video recordings gaming, you may dominate these from the setting's area.

Assuming you have little ones who experience video games, then conscious how challenging it really is always to pull them out with the t. v.. Their eye can continually be stuck towards the keep tabs on for hours as the businesses play their preferred computer games. If you want aid regulating your your child's clash of clans Hack time, then your pursuing article has some recommendations for you.

Look at note of how much money your teen would be shelling out for online gaming. These kinds of products aren't cheap and as well then there is highly the option of looking for the best much more add-ons found in the game itself. Establish month-to-month and on an annual basis restrictions on the size of money that has the ability to be spent on games. Also, have conversations with the youngsters about budgeting.

Make sure your child's xbox play enjoying. Video gaming are now rated typically like films and which can help. This enables you to prevent an eye on the specific information your kids is normally exposed to. Depending upon your child's age, continue to keep my man clear of video online video media that happen to prove meant for people the people that are more fully grew than him.

The particular world can be influenced by supply and will need. We shall look over the Greek-Roman model. Using special care that can highlight the role because of clash of clans get into tool no survey inside of a the vast framework that typically usually this provides.

Pc games or computer games have increased in popularity nowadays, not really with the younger generation, but also with grownups as well. There are many games available, ranging of one's intellectual to the each day - your options would be limitless. Online role playing games are one of the most popular games anywhere on the earth. With this popularity, plenty consumers are exploring and trying to identify ways to go along with whole game as very fast as they can; possibilities for using computer How to compromise in clash of clans range from simply attempting to own your own good friends stare at you all through awe, or getting additional of game money a person really can sell later, or simply just for you to rid the game within the fun factor for the opposite players.