|
|
Line 1: |
Line 1: |
| {{more footnotes|date=February 2012}}
| | I am 30 years old and my name is Iona Cespedes. I life in Frinton-On-Sea (Great Britain).<br><br>Here is my homepage ... [http://safedietsthatwork.bravesites.com/ diet plans] |
| In [[mathematics]], a '''square number''' or '''perfect square''' is an [[integer]] that is the [[square (algebra)|square]] of an integer;<ref>Some authors also call squares of [[rational numbers]] perfect squares.</ref> in other words, it is the [[multiplication|product]] of some integer with itself. For example, 9 is a square number, since it can be written as {{math|3 × 3}}.
| |
| | |
| The usual notation for the formula for the square of a number {{mvar|n}} is not the product {{math|''n'' × ''n''}}, but the equivalent [[exponentiation]] {{math|''n''<sup>2</sup>}}, usually pronounced as "{{mvar|n}} squared". The name ''square'' number comes from the name of the shape; see [[#Properties|below]].
| |
| <!-- This is because a square with side length {{mvar|n}} has [[area]] {{math|''n''<sup>2</sup>}}.
| |
| It is not "because", since the unit square is only one of possible choices of the unit of area.
| |
| For *any* choice (either the 1 × 1 square, unit disk, or some kind of unit triangle)
| |
| doubling the size would increase the area four-folds,
| |
| so it is not simply the "area of the square" the fact the name "square number" relies upon. -->
| |
| | |
| Square numbers are [[non-negative]]. Another way of saying that a (non-negative) number is a square number, is that its [[square root]]s are again integers. For example, {{sqrt|9}} = ±3, so 9 is a square number.
| |
| | |
| A positive integer that has no perfect square [[divisor]]s except 1 is called [[Square-free integer|square-free]].
| |
| | |
| For a non-negative integer {{mvar|n}}, the {{mvar|n}}th square number is {{math|''n''<sup>2</sup>}}, with {{math|1=0<sup>2</sup> = 0}} being the 0-th one. The concept of square can be extended to some other number systems. If rational numbers are included, then a square is the ratio of two square integers, and, conversely, the ratio of two square integers is a square (e.g., 4/9 = (2/3)<sup>2</sup>).
| |
| | |
| Starting with 1, there are <math>\lfloor \sqrt{m} \rfloor</math> square numbers up to and including {{mvar|m}}, where the expression <math>\lfloor x \rfloor</math> represents the [[floor function|floor]] of the number {{mvar|x}}.
| |
| | |
| ==Examples==
| |
| The squares {{OEIS|id=A000290}} smaller than 60<sup>2</sup> are:
| |
| | |
| <div style="float:left; padding: 1em;">
| |
| :0<sup>2</sup> = 0
| |
| :1<sup>2</sup> = 1
| |
| :2<sup>2</sup> = 4
| |
| :3<sup>2</sup> = 9
| |
| :4<sup>2</sup> = 16
| |
| :5<sup>2</sup> = 25
| |
| :6<sup>2</sup> = 36
| |
| :7<sup>2</sup> = 49
| |
| :8<sup>2</sup> = 64
| |
| :9<sup>2</sup> = 81
| |
| </div>
| |
| | |
| <div style="float:left; padding: 1em;">
| |
| :10<sup>2</sup> = 100
| |
| :11<sup>2</sup> = 121
| |
| :12<sup>2</sup> = 144
| |
| :13<sup>2</sup> = 169
| |
| :14<sup>2</sup> = 196
| |
| :15<sup>2</sup> = 225
| |
| :16<sup>2</sup> = 256
| |
| :17<sup>2</sup> = 289
| |
| :18<sup>2</sup> = 324
| |
| :19<sup>2</sup> = 361
| |
| </div>
| |
| | |
| <div style="float:left; padding: 1em;">
| |
| :20<sup>2</sup> = 400
| |
| :21<sup>2</sup> = 441
| |
| :22<sup>2</sup> = 484
| |
| :23<sup>2</sup> = 529
| |
| :24<sup>2</sup> = 576
| |
| :25<sup>2</sup> = 625
| |
| :26<sup>2</sup> = 676
| |
| :27<sup>2</sup> = 729
| |
| :28<sup>2</sup> = 784
| |
| :29<sup>2</sup> = 841
| |
| </div>
| |
| | |
| <div style="float:left; padding: 1em;">
| |
| :30<sup>2</sup> = 900
| |
| :31<sup>2</sup> = 961
| |
| :32<sup>2</sup> = 1024
| |
| :33<sup>2</sup> = 1089
| |
| :34<sup>2</sup> = 1156
| |
| :35<sup>2</sup> = 1225
| |
| :36<sup>2</sup> = 1296
| |
| :37<sup>2</sup> = 1369
| |
| :38<sup>2</sup> = 1444
| |
| :39<sup>2</sup> = 1521
| |
| </div>
| |
| | |
| <div style="float:left; padding: 1em;">
| |
| :40<sup>2</sup> = 1600
| |
| :41<sup>2</sup> = 1681
| |
| :42<sup>2</sup> = 1764
| |
| :43<sup>2</sup> = 1849
| |
| :44<sup>2</sup> = 1936
| |
| :45<sup>2</sup> = 2025
| |
| :46<sup>2</sup> = 2116
| |
| :47<sup>2</sup> = 2209
| |
| :48<sup>2</sup> = 2304
| |
| :49<sup>2</sup> = 2401
| |
| </div>
| |
| | |
| <div style="float:left; padding: 1em;">
| |
| :50<sup>2</sup> = 2500
| |
| :51<sup>2</sup> = 2601
| |
| :52<sup>2</sup> = 2704
| |
| :53<sup>2</sup> = 2809
| |
| :54<sup>2</sup> = 2916
| |
| :55<sup>2</sup> = 3025
| |
| :56<sup>2</sup> = 3136
| |
| :57<sup>2</sup> = 3249
| |
| :58<sup>2</sup> = 3364
| |
| :59<sup>2</sup> = 3481
| |
| </div>
| |
| {{-}}
| |
| | |
| The difference between any perfect square and its predecessor is given by the identity <math> n ^ 2 - (n - 1) ^ 2 = 2 n - 1 </math>. Equivalently, it is possible to count up square numbers by adding together the last square, the last square's root, and the current root, that is, <math> n ^ 2 = (n - 1) ^ 2 + (n - 1) + n </math>.
| |
| | |
| ==Properties==
| |
| The number {{mvar|m}} is a square number if and only if one can compose a square of {{mvar|m}} equal (lesser) squares: <!-- previously: one can arrange {{mvar|m}} points in a square: {{how|date=September 2012}}; nobody fixed it in 4 months -->
| |
| {| cellpadding="8"
| |
| |-
| |
| |{{bigmath|1=''m'' = 1<sup>2</sup> = 1}}
| |
| |[[Image:Square number 1.png]]
| |
| |-
| |
| |{{bigmath|1=''m'' = 2<sup>2</sup> = 4}}
| |
| |[[Image:Square number 4.png]]
| |
| |-
| |
| |{{bigmath|1=''m'' = 3<sup>2</sup> = 9}}
| |
| |[[Image:Square number 9.png]]
| |
| |-
| |
| |{{bigmath|1=''m'' = 4<sup>2</sup> = 16}}
| |
| |[[Image:Square number 16.png]]
| |
| |-
| |
| |{{bigmath|1=''m'' = 5<sup>2</sup> = 25}}
| |
| |[[Image:Square number 25.png]]
| |
| |-
| |
| | colspan=2 style="font-size:83%" |'''Note:''' White gaps between squares serve only to improve visual perception.<br/>There must be no gaps between actual squares.
| |
| |}
| |
| The unit of [[area]] is defined as the area of [[unit square]] ({{math|1 × 1}}). Hence, a square with side length {{mvar|n}} has area {{math|''n''<sup>2</sup>}}.
| |
| | |
| The expression for the {{mvar|n}}th square number is {{math|''n''<sup>2</sup>}}. This is also equal to the sum of the first {{mvar|n}} [[odd number]]s as can be seen in the above pictures, where a square results from the previous one by adding an odd number of points (shown in magenta). The formula follows:
| |
| :<math>n^2 = \sum_{k=1}^n(2k-1).</math>
| |
| So for example, {{math|1=5<sup>2</sup> = 25 = 1 + 3 + 5 + 7 + 9}}.
| |
| | |
| There are several [[recursion#Recursion in mathematics|recursive]] methods for computing square numbers. For example, the {{mvar|n}}th square number can be computed from the previous square by <math>n^2 = (n-1)^2 + (n-1) + n = (n-1)^2 + (2n-1)</math>. Alternatively, the {{mvar|n}}th square number can be calculated from the previous two by doubling the {{math|(''n'' − 1)}}-th square, subtracting the {{math|(''n'' − 2)}}-th square number, and adding 2, because {{math|1=''n''<sup>2</sup> = 2(''n'' − 1)<sup>2</sup> − (''n'' − 2)<sup>2</sup> + 2}}. For example,
| |
| :{{math|1= 2 × 5<sup>2</sup> − 4<sup>2</sup> + 2 = 2 × 25 − 16 + 2 = 50 − 16 + 2 = 36 = 6<sup>2</sup>}}.
| |
| | |
| A square number is also the sum of two consecutive [[triangular number]]s. The sum of two consecutive square numbers is a [[centered square number]]. Every odd square is also a [[centered octagonal number]].
| |
| | |
| Another property of a square number is that it has an odd number of positive divisors, while other natural numbers have an even number of positive divisors. An integer root is the only divisor that pairs up with itself to yield the square number, while other divisors come in pairs.
| |
| | |
| [[Lagrange's four-square theorem]] states that any positive integer can be written as the sum of four or fewer perfect squares. Three squares are not sufficient for numbers of the form {{math|4<sup>''k''</sup>(8''m'' + 7)}}. A positive integer can be represented as a sum of two squares precisely if its [[prime factorization]] contains no odd powers of primes of the form {{math|4''k'' + 3}}. This is generalized by [[Waring's problem]].
| |
| | |
| A square number can end only with digits 0, 1, 4, 6, 9, or 25 in [[base 10]], as follows:
| |
| | |
| #If the last digit of a number is 0, its square ends in an even number of 0s (so at least 00) and the [[Numerical digit|digits]] preceding the ending 0s must also form a square.
| |
| #If the last digit of a number is 1 or 9, its square ends in 1 and the number formed by its preceding digits must be divisible by four.
| |
| #If the last digit of a number is 2 or 8, its square ends in 4 and the preceding digit must be even.
| |
| #If the last digit of a number is 3 or 7, its square ends in 9 and the number formed by its preceding digits must be divisible by four.
| |
| #If the last digit of a number is 4 or 6, its square ends in 6 and the preceding digit must be '''odd'''.
| |
| #If the last digit of a number is 5, its square ends in 25 and the preceding digits must be 0, 2, 06, or 56.
| |
| | |
| In base 16, a square number can end only with 0, 1, 4 or 9 and
| |
| * in case 0, only 0, 1, 4, 9 can precede it,
| |
| * in case 4, only even numbers can precede it.
| |
| | |
| In general, if a [[prime]] {{mvar|p}} divides a square number {{mvar|m}} then the square of {{mvar|p}} must also divide {{mvar|m}}; if {{mvar|p}} fails to divide {{math|''m''∕''p''}}, then {{mvar|m}} is definitely not square. Repeating the divisions of the previous sentence, one concludes that every prime must divide a given perfect square an even number of times (including possibly 0 times). Thus, the number {{mvar|m}} is a square number if and only if, in its [[canonical representation of a positive integer|canonical representation]], all exponents are even.
| |
| | |
| Squarity testing can be used as alternative way in [[factorization]] of large numbers. Instead of testing for divisibility, test for squarity: for given {{mvar|m}} and some number {{mvar|k}}, if {{math|''k''<sup>2</sup> − ''m''}} is the square of an integer {{mvar|n}} then {{math|''k'' − ''n''}} divides {{mvar|m}}. (This is an application of the factorization of a [[difference of two squares]].) For example, {{math|100<sup>2</sup> − 9991}} is the square of 3, so consequently {{math|100 − 3}} divides 9991. This test is deterministic for odd divisors in the range from {{math|''k'' − ''n''}} to {{math|''k'' + ''n''}} where {{mvar|k}} covers some range of natural numbers {{math|''k'' ≥ }}{{sqrt|{{mvar|m}}}}<!-- {{sqrt}} inside {{math}} apparently has a buggy appearance with STIX Fonts, as of 3 September 2012 -->.
| |
| | |
| A square number cannot be a [[perfect number]].
| |
| | |
| The sum of the series of power numbers
| |
| : <math>\sum_{n=0}^N n^2 = 0^2 + 1^2 + 2^2 + 3^2 + 4^2 + \cdots + N^2</math>
| |
| can also be represented by the formula
| |
| : <math>\frac{N(N+1)(2N+1)}{6}.</math>
| |
| The first terms of this series (the [[square pyramidal number]]s) are:
| |
| <blockquote>
| |
| 0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201... {{OEIS|id=A000330}}.
| |
| </blockquote>
| |
| | |
| All fourth powers, sixth powers, eighth powers and so on are perfect squares.
| |
| | |
| ==Special cases==
| |
| * If the number is of the form ''m''5 where ''m'' represents the preceding digits, its square is ''n''25 where {{math|1=''n'' = ''m'' × (''m'' + 1)}} and represents digits before 25. For example the square of 65 can be calculated by {{math|1=''n'' = 6 × (6 + 1) = 42}} which makes the square equal to 4225.
| |
| * If the number is of the form ''m''0 where ''m'' represents the preceding digits, its square is ''n''00 where {{math|1=''n'' = ''m''<sup>2</sup>}}. For example the square of 70 is 4900.
| |
| * If the number has two digits and is of the form 5''m'' where ''m'' represents the units digit, its square is ''AABB'' where {{math|1=''AA'' = 25 + ''m''}} and {{math|1=''BB'' = ''m''<sup>2</sup>}}. Example: To calculate the square of 57, 25 + 7 = 32 and 7<sup>2</sup> = 49, which means 57<sup>2</sup> = 3249.
| |
| * If the number ends in 5, its square will end in 5; similarly for ending in 25, 625, 0625, 90625, ... 8212890625, etc. If the number ends in 6, its square will end in 6, similarly for ending in 76, 376, 9376, 09376, ... 1787109376. For example, the square of 55376 is 3066501376, both ending in ''376''. (The numbers 5, 6, 25, 76, etc. are called [[automorphic number]]s. They are sequence [http://oeis.org/A003226 A003226] in the [[On-Line Encyclopedia of Integer Sequences|OEIS]].)
| |
| | |
| ==Odd and even square numbers==<!-- This section is linked from [[Irrational number]] -->
| |
| | |
| Squares of even numbers are even (and in fact divisible by 4), since {{math|1=(2''n'')<sup>2</sup> = 4''n''<sup>2</sup>}}.
| |
| | |
| Squares of odd numbers are odd, since {{math|1=(2''n'' + 1)<sup>2</sup> = 4(''n''<sup>2</sup> + ''n'') + 1}}.
| |
| | |
| It follows that square roots of even square numbers are even, and square roots of odd square numbers are odd.
| |
| | |
| As all even square numbers are divisible by 4, the even numbers of the form {{math|4''n'' + 2}} are not square numbers.
| |
| | |
| As all odd square numbers are of the form {{math|4''n'' + 1}}, the odd numbers of the form {{math|4''n'' + 3}} are not square numbers.
| |
| | |
| Squares of odd numbers are of the form {{math|8''n'' + 1}}, since {{math|1=(2''n'' + 1)<sup>2</sup> = 4''n''(''n'' + 1) + 1}} and {{math|1=''n''(''n'' + 1)}} is an even number.
| |
| | |
| Every odd perfect square is a [[centered octagonal number]]. The difference between any two odd perfect squares is a multiple of 8. The difference between 1 and any higher odd perfect square always is eight times a triangular number, while the difference between 9 and any higher odd perfect square is eight times a triangular number minus eight. Since all triangular numbers have an odd factor, but no two values of {{math|2<sup>n</sup>}} differ by an amount containing an odd factor, the only perfect square of the form {{math|2<sup>n</sup> - 1}} is 1, and the only perfect square of the form {{math|2<sup>n</sup> + 1}} is 9.
| |
| | |
| ==See also==
| |
| * [[Automorphic number]]
| |
| * [[Brahmagupta–Fibonacci identity]]
| |
| * [[Cubic number]]
| |
| * [[Euler's four-square identity]]
| |
| * [[Fermat's theorem on sums of two squares]]
| |
| * [[Integer square root]]
| |
| * [[Methods of computing square roots]]
| |
| * [[Polygonal number]]
| |
| * [[Power of two]]
| |
| * [[Pythagorean triple]]
| |
| * [[Quadratic residue]]
| |
| * [[Square (algebra)#Related identities]]
| |
| * [[Square triangular number]]
| |
| * ''[[The Book of Squares]]''
| |
| | |
| ==Notes==
| |
| {{reflist}}
| |
| | |
| == References ==
| |
| *{{MathWorld|urlname=SquareNumber|title=Square Number}}
| |
| | |
| == Further reading ==
| |
| *[[J.H. Conway|Conway, J. H.]] and [[R.K. Guy|Guy, R. K.]] ''The Book of Numbers''. New York: Springer-Verlag, pp. 30–32, 1996. ISBN 0-387-97993-X
| |
| *Kiran Parulekar. ''Amazing Properties of Squares and Their Calculations''. Kiran Anil Parulekar, 2012 http://books.google.com/books?id=njEtt7rfexEC&source=gbs_navlinks_s
| |
| | |
| ==External links==
| |
| * [http://www.learntables.co.uk/square_numbers/ Learn Square Numbers]. Practice square numbers up to 144 with this children's multiplication game
| |
| * Dario Alpern, [http://www.alpertron.com.ar/FSQUARES.HTM Sum of squares]. A Java applet to decompose a natural number into a sum of up to four squares.
| |
| *[http://mathdl.maa.org/convergence/1/?pa=content&sa=viewDocument&nodeId=1296&bodyId=1433 Fibonacci and Square Numbers] at [http://mathdl.maa.org/convergence/1/ Convergence]
| |
| * [http://www.naturalnumbers.org/psquares.html The first 1,000,000 perfect squares] Includes a program for generating perfect squares up to 10<sup>15</sup>.
| |
| | |
| {{Classes of natural numbers}}
| |
| | |
| [[Category:Figurate numbers]]
| |
| [[Category:Quadrilaterals]]
| |
| [[Category:Integers]]
| |
| [[Category:Number theory]]
| |
| [[Category:Elementary arithmetic]]
| |
| [[Category:Integer sequences]]
| |