|
|
Line 1: |
Line 1: |
| In [[numerical analysis]], '''polynomial interpolation''' is the [[interpolation]] of a given [[data set]] by a [[polynomial]]: given some [[Point (geometry)#Points in Euclidean geometry|points]], find a polynomial which goes exactly through these points.
| |
|
| |
|
| == Applications ==
| |
|
| |
|
| Polynomials can be used to approximate more complicated curves, for example, the shapes of letters in [[typography]], given a few points. A relevant application is the evaluation of the [[natural logarithm]] and [[trigonometric function]]s: pick a few known data points, create a [[lookup table]], and interpolate between those data points. This results in significantly faster computations. Polynomial interpolation also forms the basis for algorithms in [[numerical quadrature]] and [[numerical ordinary differential equations]].
| | Existen dos formas para que nuestros sitios web se muestren en las primeras situaciones de Google. En este articulo de Consultor Posicionamiento en buscadores en Extremadura, te vamos a mostrar como posicionar los primeros tanto en los deselances orgánicos ( Posicionamiento SEO ) de buscadores web, como en los deselances de pago ( SEM marketing en buscadores). En este alejado nos detenemos a analizar el posicionamiento web y su relevancia. ¿Por qué posicionar nuestra web? |
|
| |
|
| Polynomial interpolation is also essential to perform sub-quadratic multiplication and squaring such as [[Karatsuba multiplication]] and [[Toom–Cook multiplication]], where an interpolation through points on a polynomial which defines the product yields the product itself. For example, given ''a'' = ''f''(''x'') = ''a''<sub>0</sub>''x''<sup>0</sup> + ''a''<sub>1</sub>''x''<sup>1</sup> + ... and ''b'' = ''g''(''x'') = ''b''<sub>0</sub>''x''<sup>0</sup> + ''b''<sub>1</sub>''x''<sup>1</sup> + ... then the product ''ab'' is equivalent to ''W''(''x'') = ''f''(''x'')''g''(''x''). Finding points along ''W''(''x'') by substituting ''x'' for small values in ''f''(''x'') and ''g''(''x'') yields points on the curve. Interpolation based on those points will yield the terms of ''W''(''x'') and subsequently the product ''ab''. In the case of Karatsuba multiplication this technique is substantially faster than quadratic multiplication, even for modest-sized inputs. This is especially true when implemented in parallel hardware.
| | Pues la respuesta es clara, por que sin este posicionamiento web en buscadores ya sea natural (Posicionamiento web en buscadores), de pago (SEM) nadie podrá ver nuestra página web. Gracias a estas optimizaciones conseguiremos que nuestra web esté bien posicionada y de este modo conseguiremos más visitas. La respuesta es muy fácil. Utilizando el posicionamiento en buscadores natural (Posicionamiento web en buscadores) que consiste en realizar una serie de trabajos con el fin de ir subiendo posiciones tu página web en los buscadores web, hasta lograr estar en las primeras posiciones. |
|
| |
|
| ==Definition== | | El objetivo primordial de [http://www.reddit.com/r/howto/search?q=cualquier cualquier] página web es que la gente la visite. El SEO (SEO) es un campo en constante cambio. Mantenerse en la Elite del posicionamiento web en buscadores requiere un compromiso de tiempo completo con los altibajos y los pormenores de los buscadores del planeta, sobre todo con Google. Los motores de búsqueda están de forma continua fusionándose y mudando sus reglas para mantener sus índices libres de webs abusivas. |
|
| |
|
| Given a set of ''n'' + 1 data points (''x''<sub>''i''</sub>,''y''<sub>''i''</sub>) where no two ''x''<sub>''i''</sub> are the same, one is looking for a polynomial ''p'' of degree at most ''n'' with the property
| | Lamentablemente, todos y cada uno estos cambios pueden representar que las webs lícitas pierdan su buen posicionamiento web en buscadores natural adquirido en los motores de búsqueda aun que su web sea eliminada de los buscadores. Se estudian las técnicas de posicionamiento de páginas web, tanto las correspondientes al posicionamiento natural Posicionamiento SEO, que persiguen progresar el contenido del lugar web y su popularidad en la red; como la creación de campañas publicitarias, para lo que se emplea Google Adwords. |
| :<math>p(x_i) = y_i,\; i=0,\ldots,n.</math>
| |
|
| |
|
| The [[Unisolvent functions|unisolvence]] theorem {{anchor|unisolvence theorem}} states that such a polynomial ''p'' exists and is unique, and can be proved by the [[Vandermonde matrix]], as described below.
| | La meta de este posicionamiento es lograr el mejor ranking posible en los resultados de las buscas que efectúan los usuarios en Google, Yahoo, MSN y otros buscadores web para obtener tráfico cualificado. Este diagnóstico, previo al trabajo de optimización y posicionamiento natural de tú página Web y registro en buscadores, permitirá determinar el estado actual de tú página Web. El ranking en buscadores y directorios es imprescindible para establecer un punto de inicio, a través del cual se podrán valorar el grado de éxito del trabajo contratado. |
|
| |
|
| The theorem states that for ''n''+1 interpolation nodes (''x''<sub>''i''</sub>), polynomial interpolation defines a linear [[bijection]]
| | ¿De que sirve tener una página de web tan bonita si no la ve absolutamente nadie? Optimización para posicionamiento natural web, SEO.. SEO es un término comúnmente utilizado mas que corresponde a las siglas en inglés Search Engine Optimization (optimización para motores de búsqueda). El Posicionamiento web busca influir de forma natural y absolutamente permitida en los resultados de la búsqueda de los motores como Google. |
|
| |
|
| :<math>L_n:\mathbb{K}^{n+1} \to \Pi_n</math>
| | . Un proyecto web no existe en la red de redes si no posee un volumen de visitantes que [http://Www.Sharkbayte.com/keyword/garantiza garantiza] su rentabilidad. Una manera de obtener incrementar el tráfico web es mejorando el posicionamiento [https://www.rebelmouse.com/spiffyegg2454/posicionamiento-web-en-buscado-652661103.html Posicionar Seo] web a través de técnicas Posicionamiento web en buscadores (search engine optimization), para lograr aparecer en los resultados de búsqueda en una posición mejor que la que le concede el posicionamiento natural de su sitio web, esto es, el posicionamiento que le asignan los buscadores web una vez se publica su sitio web y suponiendo que no unstrittigen ha realizado técnicas Posicionamiento web auxiliares.<br><br>If you have any inquiries relating to where and just how to use [https://www.rebelmouse.com/berserkhomicide98/agencia-de-marketing-on-lin-652995906.html dise�o web marketing online], you could call us at our own web-site. |
| | |
| where <math>\Pi_n</math> is the [[vector space]] of polynomials (defined on any interval containing the nodes) of degree at most ''n''.
| |
| | |
| ==Constructing the interpolation polynomial==
| |
| [[Image:Interpolation example polynomial.svg|thumb|right|The red dots denote the data points (''x''<sub>''k''</sub>,''y''<sub>''k''</sub>), while the blue curve shows the interpolation polynomial.]]
| |
| Suppose that the interpolation polynomial is in the form
| |
| :<math>p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0. \qquad (1) </math>
| |
| The statement that ''p'' interpolates the data points means that
| |
| :<math>p(x_i) = y_i \qquad\mbox{for all } i \in \left\{ 0, 1, \dots, n\right\}.</math>
| |
| If we substitute equation (1) in here, we get a [[system of linear equations]] in the coefficients <math>a_k</math>. The system in matrix-vector form reads
| |
| :<math>\begin{bmatrix}
| |
| x_0^n & x_0^{n-1} & x_0^{n-2} & \ldots & x_0 & 1 \\
| |
| x_1^n & x_1^{n-1} & x_1^{n-2} & \ldots & x_1 & 1 \\
| |
| \vdots & \vdots & \vdots & & \vdots & \vdots \\
| |
| x_n^n & x_n^{n-1} & x_n^{n-2} & \ldots & x_n & 1
| |
| \end{bmatrix}
| |
| \begin{bmatrix}
| |
| a_n \\
| |
| a_{n-1} \\
| |
| \vdots \\
| |
| a_0
| |
| \end{bmatrix}
| |
| =
| |
| \begin{bmatrix}
| |
| y_0 \\
| |
| y_1 \\
| |
| \vdots \\
| |
| y_n
| |
| \end{bmatrix}.
| |
| </math>
| |
| We have to solve this system for <math>a_k</math> to construct the interpolant <math>p(x).</math> The matrix on the left is commonly referred to as a [[Vandermonde matrix]].
| |
| | |
| The [[condition number]] of the Vandermonde matrix may be large,<ref>{{cite journal|last=Gautschi|first=Walter|title=Norm Estimates for Inverses of Vandermonde Matrices|journal=Numerische Mathematik|volume=23|issue=4|pages=337–347|year=1975|doi=10.1007/BF01438260}}</ref> causing large errors when computing the coefficients <math>a_i</math> if the system of equations is solved using [[Gaussian elimination]].
| |
| | |
| Several authors have therefore proposed algorithms which exploit the structure of the Vandermonde matrix to compute numerically stable solutions in <math>\mathcal O(n^2)</math> operations instead of the <math>\mathcal O(n^3)</math> required by Gaussian elimination.<ref>{{cite journal|last=Higham|first=N. J.|title=Fast Solution of Vandermonde-Like Systems Involving Orthogonal Polynomials|journal=IMA Journal of Numerical Analysis|volume=8|issue=4|pages=473–486|year=1988|doi=10.1093/imanum/8.4.473}}</ref><ref>{{cite journal|last=Björck|first=Å|coauthors=V. Pereyra|title=Solution of Vandermonde Systems of Equations|journal=Mathematics of Computation|volume=24|pages=893–903|year=1970|doi=10.2307/2004623|issue=112|publisher=American Mathematical Society|jstor=2004623}}</ref><ref>{{cite journal|author=Calvetti, D and Reichel, L|title=Fast Inversion of Vanderomnde-Like Matrices Involving Orthogonal Polynomials|journal=BIT|pages=473–484|year=1993|doi=10.1007/BF01990529|volume=33|issue=33}}</ref> These methods rely on constructing first a [[Newton polynomial|Newton interpolation]] of the polynomial and then converting it to the monomial form above.
| |
| | |
| Alternatively, we may write down the polynomial immediately in terms of [[Lagrange polynomial]]s:
| |
| :<math>p(x)=\frac{(x-x_1)(x-x_2)\cdots(x-x_n)}{(x_0-x_1)(x_0-x_2)\cdots(x_0-x_n)}\cdot y_0+\frac{(x-x_0)(x-x_2)\cdots(x-x_n)}{(x_1-x_0)(x_1-x_2)\cdots(x_1-x_n)}\cdot y_1</math>
| |
| ::<math>+\ldots+\frac{(x-x_0)(x-x_1)\cdots(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)\cdots(x_n-x_{n-1})}\cdot y_n.</math>
| |
| That is,
| |
| :<math>p(x)=\sum_{i=0}^{n}y_i\cdot\prod_{0\leq j\leq n,j\neq i}\frac{x-x_j}{x_i-x_j}.</math>
| |
| | |
| | |
| For matrix arguments, this formula is called [[Sylvester's formula]] and the matrix-valued Lagrange polynomials are the [[Frobenius covariant]]s.
| |
| | |
| ==Uniqueness of the interpolating polynomial==
| |
| | |
| ===Proof 1===
| |
| Suppose we interpolate through ''n'' + 1 data points with an at-most ''n'' degree polynomial ''p''(''x'') (we need at least ''n'' + 1 datapoints or else the polynomial cannot be fully solved for). Suppose also another polynomial exists also of degree at most ''n'' that also interpolates the ''n'' + 1 points; call it ''q''(''x'').
| |
| | |
| Consider <math>r(x) = p(x) - q(x)</math>. We know,
| |
| # ''r''(''x'') is a polynomial
| |
| # ''r''(''x'') has degree at most ''n'', since <math>p(x)</math> and <math>q(x)</math> are no higher than this and we are just subtracting them.
| |
| # At the ''n'' + 1 data points, <math>r(x_i) = p(x_i) - q(x_i) = y_i - y_i = 0</math>. Therefore ''r''(''x'') has ''n'' + 1 roots.
| |
| | |
| But ''r''(''x'') is an ''n'' degree polynomial (or less)! It has one root too many.
| |
| Formally, if <math>r(x)</math> is any non-zero polynomial, it must be writable as <math>r(x) = (x-x_0)(x-x_1)\cdots(x-x_n)</math>.
| |
| By distributivity the ''n'' + 1 ''x'''s multiply together to make <math>x^{n+1}</math>, i.e. one degree higher than the maximum we set.
| |
| So the only way ''r''(''x'') can exist is if ''r''(''x'') = 0.
| |
| : <math>r(x) = 0 = p(x) - q(x) \implies p(x) = q(x)</math>
| |
| | |
| So <math>q(x)</math> (which could be any polynomial, so long as it interpolates the points) is identical with <math>p(x)</math>, and <math>p(x)</math> is unique.
| |
| | |
| ===Proof 2===
| |
| | |
| Given the Vandermonde matrix used above to construct the interpolant, we can set up the system
| |
| | |
| : <math>V a = y \, </math>
| |
| | |
| To prove that V is [[Invertible matrix|nonsingular]] we use the Vandermonde determinant formula:
| |
| | |
| : <math>\det(V) = \prod_{i,j=0, i<j}^n (x_i - x_j) </math> | |
| | |
| since the ''n'' + 1 points are distinct, the [[determinant]] can't be zero as <math>x_i - x_j</math> is never zero, therefore ''V'' is nonsingular and the system has a unique solution.
| |
| | |
| Either way this means that no matter what method we use to do our interpolation: direct, [[Spline (mathematics)|spline]], [[Lagrange polynomial|lagrange]] etc., (assuming we can do all our calculations perfectly) we will always get the same polynomial.
| |
| | |
| ==Non-Vandermonde solutions==
| |
| | |
| We are trying to construct our unique interpolation polynomial in the vector space <math>\Pi_n</math> of polynomials of degree ''n''. When using a [[monomial basis]] for <math>\Pi_n</math> we have to solve the Vandermonde matrix to construct the coefficients <math>a_k</math> for the interpolation polynomial. This can be a very costly operation (as counted in clock cycles of a computer trying to do the job). By choosing another basis for <math>\Pi_n</math> we can simplify the calculation of the coefficients but then we have to do additional calculations when we want to express the interpolation polynomial in terms of a [[monomial basis]].
| |
| | |
| One method is to write the interpolation polynomial in the [[Newton form]] and use the method of [[divided differences]] to construct the coefficients, e.g. [[Neville's algorithm]]. The cost is [[Big O notation|O]]<math>(n^2)</math> operations, while Gaussian elimination costs O<math>(n^3)</math> operations. Furthermore, you only need to do O<math>(n)</math> extra work if an extra point is added to the data set, while for the other methods, you have to redo the whole computation.
| |
| | |
| Another method is to use the [[Lagrange form]] of the interpolation polynomial. The resulting formula immediately shows that the interpolation polynomial exists under the conditions stated in the above theorem. Lagrange formula is to be preferred to Vandermorde formula when we are not interested in computing the coefficients of the polynomial, but in computing the value of <math>p(x)</math> in a given ''x'' not in the original data set. In this case, we can reduce complexity to O<math>(n^2)</math>.<ref>R.Bevilaqua, D. Bini, M.Capovani and O. Menchi (2003). ''Appunti di Calcolo Numerico''. Chapter 5, p. 89. Servizio Editoriale Universitario Pisa - Azienda Regionale Diritto allo Studio Universitario.</ref>
| |
| | |
| The [[Bernstein form]] was used in a constructive proof of the [[Weierstrass approximation theorem]] by [[Sergei Natanovich Bernstein|Bernstein]] and has nowadays gained great importance in computer graphics in the form of [[Bézier curve]]s.
| |
| | |
| ==Interpolation error==
| |
| | |
| {{clarify section|date=June 2011}}
| |
| | |
| When interpolating a given function ''f'' by a polynomial of degree ''n'' at the nodes ''x''<sub>0</sub>,...,''x''<sub>''n''</sub> we get the error
| |
| | |
| :<math>f(x) - p_n(x) = f[x_0,\ldots,x_n,x] \prod_{i=0}^n (x-x_i) </math> | |
| | |
| where
| |
| :<math>f[x_0,\ldots,x_n,x]</math>
| |
| | |
| is the notation for [[divided differences]].
| |
| | |
| If ''f'' is ''n'' + 1 times continuously differentiable on a closed interval ''I'' and <math>p_n(x)</math> be a polynomial of degree at most n that interpolates ''f'' at ''n'' + 1 distinct points {''x''<sub>''i''</sub>} (''i''=0,1,...,n) in that interval. Then for each x in the interval there exists <math>\xi</math> in that interval such that
| |
| | |
| :<math> f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x-x_i) </math>
| |
| | |
| === Proof ===
| |
| Let's set the error term is
| |
| | |
| <math> R_n(x) = f(x) - p_n(x) </math>
| |
| | |
| and set up an auxiliary function <math>Y(t)</math> and the function is
| |
| | |
| <math> Y(t) = R_n(t) - \frac{R_n(x)}{W(x)} \ W(t) </math>
| |
| | |
| where
| |
| | |
| <math> W(t) = \prod_{i=0}^n (t-x_i) </math>
| |
| | |
| and
| |
| | |
| <math> W(x) = \prod_{i=0}^n (x-x_i) </math>
| |
| | |
| Since <math> x_i </math> are roots of function f and <math> p_n(x) </math>, so we will have
| |
| | |
| <math> Y(x) = R_n(x) - \frac{R_n(x)}{W(x)} \ W(x) = 0 </math>
| |
| | |
| and
| |
| | |
| <math> Y(x_i) = R_n(x_i) - \frac{R_n(x)}{W(x)} \ W(x_i) = 0 </math>
| |
| | |
| Then <math>Y(t)</math> has n+2 roots. From [[Rolle's theorem]], <math>Y^\prime(t)</math> has n+1 roots, then <math>Y^{(n+1)}(t)</math> has one root <math>\xi</math>, where <math>\xi</math> is in the interval I.
| |
| | |
| So we can get
| |
| | |
| <math> Y^{(n+1)}(t) = R_n^{(n+1)}(t) - \frac{R_n(x)}{W(x)} \ (n+1)! </math>
| |
| | |
| Since <math>p_n(x)</math> is a polynomial of degree at most n, then
| |
| | |
| <math> R_n^{(n+1)}(t) = f^{(n+1)}(t) </math>
| |
| | |
| Thus
| |
| | |
| <math> Y^{(n+1)}(t) = f^{(n+1)}(t) - \frac{R_n(x)}{W(x)} \ (n+1)! </math>
| |
| | |
| Since <math>\xi</math> is the root of <math>Y^{(n+1)}(t)</math>, so
| |
| | |
| <math> Y^{(n+1)}(\xi) = f^{(n+1)}(\xi) - \frac{R_n(x)}{W(x)} \ (n+1)! = 0 </math>
| |
| | |
| Therefore
| |
| | |
| <math> R_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x-x_i) </math>.
| |
| | |
| Thus the remainder term in the Lagrange form of the [[Taylor's theorem|Taylor theorem]] is a special case of interpolation error when all interpolation nodes ''x''<sub>''i''</sub> are identical.<ref>{{cite web|url=http://www.math.okstate.edu/~binegar/4513-F98/4513-l16.pdf|title=Errors in Polynomial Interpolation}}</ref>
| |
| | |
| In the case of equally spaced interpolation nodes <math>x_i = x_0 + ih</math>, it follows that the interpolation error is O<math>(h^{n+1})</math>. However, this does not yield any information on what happens when <math>n \to \infty</math>. That question is treated in the [[#Convergence properties|section ''Convergence properties'']].
| |
| | |
| The above error bound suggests choosing the interpolation points ''x''<sub>''i''</sub> such that the product | Π (''x'' − ''x''<sub>''i''</sub>) | is as small as possible. The [[Chebyshev nodes]] achieve this.
| |
| | |
| ==Lebesgue constants==
| |
| :''See the main article: [[Lebesgue constant (interpolation)|Lebesgue constant]].''
| |
| | |
| We fix the interpolation nodes ''x''<sub>0</sub>, ..., ''x''<sub>''n''</sub> and an interval [''a'', ''b''] containing all the interpolation nodes. The process of interpolation maps the function ''f'' to a polynomial ''p''. This defines a mapping ''X'' from the space ''C''([''a'', ''b'']) of all continuous functions on [''a'', ''b''] to itself. The map ''X'' is linear and it is a [[projection (linear algebra)|projection]] on the subspace Π<sub>''n''</sub> of polynomials of degree ''n'' or less.
| |
| | |
| The Lebesgue constant ''L'' is defined as the [[operator norm]] of ''X''. One has (a special case of [[Lebesgue's lemma]]):
| |
| | |
| :<math> \|f-X(f)\| \le (L+1) \|f-p^*\|. </math>
| |
| | |
| In other words, the interpolation polynomial is at most a factor (''L'' + 1) worse than the best possible approximation. This suggests that we look for a set of interpolation nodes that ''L'' small. In particular, we have for [[Chebyshev nodes]]:
| |
| | |
| :<math> L \le \frac2\pi \log(n+1) + 1.\quad </math>
| |
| | |
| We conclude again that Chebyshev nodes are a very good choice for polynomial interpolation, as the growth in ''n'' is exponential for equidistant nodes. However, those nodes are not optimal.
| |
| | |
| ==Convergence properties==
| |
| | |
| It is natural to ask, for which classes of functions and for which interpolation nodes the sequence of interpolating polynomials converges to the interpolated function as the degree ''n'' goes to infinity? Convergence may be understood in different ways, e.g. pointwise, uniform or in some integral norm.
| |
| | |
| The situation is rather bad for equidistant nodes, in that uniform convergence is not even guaranteed for infinitely differentiable functions. One [[Runge's phenomenon|classical example, due to Carl Runge]], is the function ''f''(''x'') = 1 / (1 + ''x''<sup>2</sup>) on the interval [−5, 5]. The interpolation error ||''f'' − ''p''<sub>''n''</sub>||<sub><math>\infty</math></sub> grows without bound as <math>n \rightarrow \infty</math>. Another example is the function ''f''(''x'') = |''x''| on the interval [−1, 1], for which the interpolating polynomials do not even converge pointwise except at the three points ''x'' = −1, 0, and 1.<ref>{{Harvtxt|Watson|1980|p=21}} attributes the last example to {{Harvtxt|Bernstein|1912}}.</ref>
| |
| | |
| One might think that better convergence properties may be obtained by choosing different interpolation nodes. The following '''theorem''' seems to be a rather encouraging answer:
| |
| | |
| :For any function ''f''(''x'') continuous on an interval [''a'',''b''] there exists a table of nodes for which the sequence of interpolating polynomials <math>p_n(x)</math> converges to ''f''(''x'') uniformly on [''a'',''b''].
| |
| | |
| '''Proof'''. It's clear that the sequence of polynomials of best approximation <math>p^*_n(x)</math> converges to ''f''(''x'') uniformly (due to [[Weierstrass approximation theorem]]). Now we have only to show that each <math>p^*_n(x)</math> may be obtained by means of interpolation on certain nodes. But this is true due to a special property of polynomials of best approximation known from the [[Chebyshev alternation theorem]]. Specifically, we know that such polynomials should intersect ''f''(''x'') at least ''n''+1 times. Choosing the points of intersection as interpolation nodes we obtain the interpolating polynomial coinciding with the best approximation polynomial.
| |
| | |
| The defect of this method, however, is that interpolation nodes should be calculated anew for each new function ''f''(''x''), but the algorithm is hard to be implemented numerically. Does there exist a single table of nodes for which the sequence of interpolating polynomials converge to any continuous function ''f''(''x'')? The answer is unfortunately negative as it is stated by the following '''theorem''':
| |
| | |
| :For any table of nodes there is a continuous function ''f''(''x'') on an interval [''a'',''b''] for which the sequence of interpolating polynomials diverges on [''a'',''b''].<ref>{{Harvtxt|Watson|1980|p=21}} attributes this theorem to {{Harvtxt|Faber|1914}}.</ref> | |
| | |
| The proof essentially uses the lower bound estimation of the Lebesgue constant, which we defined above to be the operator norm of ''X''<sub>''n''</sub> (where ''X''<sub>''n''</sub> is the projection operator on Π<sub>''n''</sub>). Now we seek a table of nodes for which
| |
| | |
| :<math>\lim_{n \to \infty} X_n f = f,\text{ for every }f \in C([a,b]). \, </math>
| |
| | |
| Due to the [[Banach–Steinhaus theorem]], this is only possible when norms of ''X''<sub>''n''</sub> are uniformly bounded, which cannot be true since we know that <math>\|X_n\|\geq \frac{2}{\pi} \log(n+1)+C.</math>
| |
| | |
| For example, if equidistant points are chosen as interpolation nodes, the function from [[Runge's phenomenon]] demonstrates divergence of such interpolation. Note that this function is not only continuous but even infinitely times differentiable on [−1, 1]. For better [[Chebyshev nodes]], however, such an example is much harder to find because of the '''theorem''':
| |
| | |
| :For every [[absolute continuity|absolutely continuous]] function on [−1, 1] the sequence of interpolating polynomials constructed on Chebyshev nodes converges to ''f''(''x'') uniformly.
| |
| | |
| ==Related concepts==
| |
| | |
| [[Runge's phenomenon]] shows that for high values of ''n'', the interpolation polynomial may oscillate wildly between the data points. This problem is commonly resolved by the use of [[spline interpolation]]. Here, the interpolant is not a polynomial but a [[spline (mathematics)|spline]]: a chain of several polynomials of a lower degree.
| |
| | |
| Interpolation of [[periodic function]]s by [[harmonic analysis|harmonic]] functions is accomplished by [[Fourier transform]]. This can be seen as a form of polynomial interpolation with harmonic base functions, see [[trigonometric interpolation]] and [[trigonometric polynomial]].
| |
| | |
| [[Hermite interpolation]] problems are those where not only the values of the polynomial ''p'' at the nodes are given, but also all derivatives up to a given order. This turns out to be equivalent to a system of simultaneous polynomial congruences, and may be solved by means of the [[Chinese remainder theorem]] for polynomials. [[Birkhoff interpolation]] is a further generalization where only derivatives of some orders are prescribed, not necessarily all orders from 0 to a ''k''.
| |
| | |
| [[Collocation method]]s for the solution of differential and integral equations are based on polynomial interpolation.
| |
| | |
| The technique of [[rational function modeling]] is a generalization that considers ratios of polynomial functions.
| |
| | |
| At last, [[multivariate interpolation]] for higher dimensions.
| |
| | |
| ==See also==
| |
| * [[Newton series]]
| |
| | |
| ==Notes==
| |
| {{reflist|30em}}
| |
| | |
| ==References==
| |
| * {{Citation |first=Kendell A. |last=Atkinson |year=1988 |title=An Introduction to Numerical Analysis |edition=2nd |chapter=Chapter 3. |publisher= John Wiley and Sons |isbn=0-471-50023-2 |doi= }}
| |
| * {{Citation |first=Sergei N. |last=Bernstein |authorlink=Sergei Natanovich Bernstein |year=1912 |title=Sur l'ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné |language=French |trans_chapter=On the order of the best approximation of continuous functions by polynomials of a given degree |journal=Mem. Acad. Roy. Belg. |issn= |volume=4 |issue= |pages=1–104 |doi=}}
| |
| * {{Citation |first=L. |last=Brutman |year=1997 |title=Lebesgue functions for polynomial interpolation — a survey |journal=Ann. Numer. Math. |issn= |volume=4 |issue= |pages=111–127 |doi= }}
| |
| * {{Citation |first=Georg |last=Faber |authorlink=Georg Faber |year=1914 |title=Über die interpolatorische Darstellung stetiger Funktionen |language=German |trans_chapter=On the Interpolation of Continuous Functions |journal=Deutsche Math. Jahr. |volume=23 |issue= |pages=192–210 |doi=}}
| |
| * {{Citation |first=M. J. D. |last=Powell |authorlink=Michael J. D. Powell |year=1981 |title=Approximation Theory and Methods |chapter=Chapter 4 |publisher=Cambridge University Press |isbn=0-521-29514-9 |doi= }}
| |
| * {{Citation |first=Michelle |last=Schatzman |year=2002 |title=Numerical Analysis: A Mathematical Introduction |chapter=Chapter 4 |publisher=Clarendon Press |location=Oxford |isbn=0-19-850279-6 |doi=}}
| |
| * {{Citation |first=Endre |last=Süli |authorlink=Endre Süli |first2=David |last2=Mayers |year=2003 |title=An Introduction to Numerical Analysis |chapter=Chapter 6 |publisher=Cambridge University Press |isbn=0-521-00794-1 |doi=}}
| |
| * {{Citation |first=G. Alistair |last=Watson |year=1980 |title=Approximation Theory and Numerical Methods |publisher=John Wiley |isbn=0-471-27706-1 |doi=}}
| |
| | |
| == External links ==
| |
| * {{springer|title=Interpolation process|id=p/i051970}}
| |
| * [http://www.alglib.net/interpolation/polynomial.php ALGLIB] has an implementations in C++ / C# / VBA / Pascal.
| |
| * [http://www.gnu.org/software/gsl/ GSL] has a polynomial interpolation code in C
| |
| * [http://demonstrations.wolfram.com/InterpolatingPolynomial/ Interpolating Polynomial] by [[Stephen Wolfram]], the [[Wolfram Demonstrations Project]].
| |
| | |
| [[Category:Interpolation]]
| |
| [[Category:Polynomials]]
| |
| [[Category:Articles containing proofs]]
| |
Existen dos formas para que nuestros sitios web se muestren en las primeras situaciones de Google. En este articulo de Consultor Posicionamiento en buscadores en Extremadura, te vamos a mostrar como posicionar los primeros tanto en los deselances orgánicos ( Posicionamiento SEO ) de buscadores web, como en los deselances de pago ( SEM marketing en buscadores). En este alejado nos detenemos a analizar el posicionamiento web y su relevancia. ¿Por qué posicionar nuestra web?
Pues la respuesta es clara, por que sin este posicionamiento web en buscadores ya sea natural (Posicionamiento web en buscadores), de pago (SEM) nadie podrá ver nuestra página web. Gracias a estas optimizaciones conseguiremos que nuestra web esté bien posicionada y de este modo conseguiremos más visitas. La respuesta es muy fácil. Utilizando el posicionamiento en buscadores natural (Posicionamiento web en buscadores) que consiste en realizar una serie de trabajos con el fin de ir subiendo posiciones tu página web en los buscadores web, hasta lograr estar en las primeras posiciones.
El objetivo primordial de cualquier página web es que la gente la visite. El SEO (SEO) es un campo en constante cambio. Mantenerse en la Elite del posicionamiento web en buscadores requiere un compromiso de tiempo completo con los altibajos y los pormenores de los buscadores del planeta, sobre todo con Google. Los motores de búsqueda están de forma continua fusionándose y mudando sus reglas para mantener sus índices libres de webs abusivas.
Lamentablemente, todos y cada uno estos cambios pueden representar que las webs lícitas pierdan su buen posicionamiento web en buscadores natural adquirido en los motores de búsqueda aun que su web sea eliminada de los buscadores. Se estudian las técnicas de posicionamiento de páginas web, tanto las correspondientes al posicionamiento natural Posicionamiento SEO, que persiguen progresar el contenido del lugar web y su popularidad en la red; como la creación de campañas publicitarias, para lo que se emplea Google Adwords.
La meta de este posicionamiento es lograr el mejor ranking posible en los resultados de las buscas que efectúan los usuarios en Google, Yahoo, MSN y otros buscadores web para obtener tráfico cualificado. Este diagnóstico, previo al trabajo de optimización y posicionamiento natural de tú página Web y registro en buscadores, permitirá determinar el estado actual de tú página Web. El ranking en buscadores y directorios es imprescindible para establecer un punto de inicio, a través del cual se podrán valorar el grado de éxito del trabajo contratado.
¿De que sirve tener una página de web tan bonita si no la ve absolutamente nadie? Optimización para posicionamiento natural web, SEO.. SEO es un término comúnmente utilizado mas que corresponde a las siglas en inglés Search Engine Optimization (optimización para motores de búsqueda). El Posicionamiento web busca influir de forma natural y absolutamente permitida en los resultados de la búsqueda de los motores como Google.
. Un proyecto web no existe en la red de redes si no posee un volumen de visitantes que garantiza su rentabilidad. Una manera de obtener incrementar el tráfico web es mejorando el posicionamiento Posicionar Seo web a través de técnicas Posicionamiento web en buscadores (search engine optimization), para lograr aparecer en los resultados de búsqueda en una posición mejor que la que le concede el posicionamiento natural de su sitio web, esto es, el posicionamiento que le asignan los buscadores web una vez se publica su sitio web y suponiendo que no unstrittigen ha realizado técnicas Posicionamiento web auxiliares.
If you have any inquiries relating to where and just how to use [https://www.rebelmouse.com/berserkhomicide98/agencia-de-marketing-on-lin-652995906.html dise�o web marketing online], you could call us at our own web-site.